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Abstract

Precision Measurement of the Top Quark Mass in the Lepton + Jets Channel

Using a Matrix Element Method with Quasi–Monte Carlo Integration

by

Paul Joseph Lujan

Doctor of Philosophy in Physics

University of California, Berkeley

Professor James Siegrist, Co-Chair

Dr. Angela Galtieri, Co-Chair

This thesis presents a measurement of the top quark mass obtained from pp̄

collisions at
√

s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector.

The measurement uses a matrix element integration method to calculate a tt̄ like-

lihood, employing a Quasi–Monte Carlo integration, which enables us to take into

account effects due to finite detector angular resolution and quark mass effects.

We calculate a tt̄ likelihood as a 2-D function of the top pole mass mt and ∆JES,

where ∆JES parameterizes the uncertainty in our knowledge of the jet energy scale;

it is a shift applied to all jet energies in units of the jet-dependent systematic error.

By introducing ∆JES into the likelihood, we can use the information contained in

W boson decays to constrain ∆JES and reduce error due to this uncertainty. We

use a neural network discriminant to identify events likely to be background, and

apply a cut on the peak value of individual event likelihoods to reduce the effect of

badly reconstructed events. This measurement uses a total of 4.3 fb−1 of integrated

luminosity, requiring events with a lepton, large 6ET , and exactly four high-energy

jets in the pseudorapidity range |η| < 2.0, of which at least one must be tagged as

coming from a b quark. In total, we observe 738 events before and 630 events after

1



applying the likelihood cut, and measure mt = 172.6 ± 0.9 (stat.) ± 0.7 (JES) ±

1.1 (syst.) GeV/c2, or mt = 172.6 ± 1.6 (tot.) GeV/c2.

Co-Chair Date

Co-Chair Date
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Chapter 1

Introduction
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Since the ’70s, the Standard Model of particle physics has proven to be an

extremely successful description of nearly all known particle physics measurements.

The Standard Model, which contains the two families of fundmental particles, the

quarks and leptons, and three fundamental forces and the gauge bosons which

carry those forces, has seen a series of experimental successes, most notably the

prediction of a third generation of quarks in the bottom quark (discovered in

1977 [1]) and its heavier partner, the top quark (discovered in 1995 [2]), as well as

the prediction of the W and Z gauge bosons, discovered in 1983 [3].

However, there are still several questions that the Standard Model has not

yet answered; one of the most important of these is the origin of mass. The

Standard Model predicts that the mass of particles arises from interactions with a

scalar field, the Higgs field, and the corresponding gauge boson, the Higgs boson.

Unfortunately, despite being the subject of intense search, the Higgs boson has not

yet been experimentally observed. Discovery of the Higgs boson would represent

another success for the Standard Model and answer one of the most important

remaining questions, while failure to discover a Standard Model Higgs would open

up a new area of potential physics beyond the Standard Model. Consequently, the

Higgs search is of great importance to the field of particle physics at present.

Measurement of the top quark mass provides a very useful tool to help us in

this Higgs search. Aside from being intrinsically important — as the Standard

Model does not contain any a priori predictions of particle masses, the only way

to determine them is through direct measurement — measurement of the top quark

mass also allows us to constrain the Higgs boson mass, giving us a better idea of

how to best conduct this search.

The Fermilab Tevatron is currently the highest-energy particle accelerator in

the world, and will remain so until LHC, the Large Hadron Collider, begins physics

operations (currently expected to be in late 2009). As the Tevatron is the only

collider with enough energy to produce top quarks and (potentially) Higgs bosons,
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it is naturally home to a large amount of activity in both of these areas. While it

was initially expected that the Higgs boson would not be discovered until the LHC

began operations, improved performance of the Tevatron coupled with advances

in analysis techniques have increased the possibility that the Higgs boson could be

observed at the Tevatron before the LHC.

This thesis presents a measurement of the top quark mass performed at CDF,

one of the two large, general-purpose detectors (along with D0) located at the

Tevatron. We first employed the technique presented here to measure the top

quark mass in 1.9 fb−1 of data, which we later updated to 2.7 fb−1 and then to

3.2 fb−1 [4]. This paper further updates the measurement to include 4.3 fb−1 of

integrated luminosity, totalling more than seven years’ worth of data from the

Tevatron, and includes a total of 738 events selected as tt̄ candidates from the

data.

The particular technique used in this analysis is known as a matrix element

integration, in which the matrix element |M |2 for tt̄ production and decay is inte-

grated over unmeasured quantities to obtain a likelihood of observing the events

seen in the detector as a function of the top pole mass mt. The matrix element

method has become increasingly popular as a technique to measure the top mass,

as the computational power available to perform this integration has increased;

first used to measure the top quark mass in a D0 Run I analysis [5], it has now

seen widespread adoption at both CDF and D0 [6] for top mass analyses in a

variety of channels. Matrix element techniques have generally proven to be the

most precise method available to measure the top mass; some advantages of the

matrix element method are that events are naturally weighted by the amount of

information that they contain, as the likelihood will tend to have sharper peaks for

better-measured events, and the ability of the matrix element integration, through

the inclusion of transfer functions, to model non-Gaussian detector responses.

Because a tt̄ event includes a large number of unknowns, integrating over the
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full phase space of these unknown variables is not computationally practical. One

can reduce the number of unknowns, and hence the computation time required to

evaluate the likelihood, by making a variety of kinematic assumptions; for instance,

an earlier version of this analysis [7] integrated over a total of seven unknown

variables by making assumptions about the masses and angles of the quarks in

the event. While this makes the calculation more computationally tractable, the

disadvantage of this procedure is that these assumptions are, of course, not always

satisfied, resulting in an imperfect modeling of the actual physics and hence a

worse result. In this analysis, we employ, for the first time in a top mass analysis,

an improved integration technique, Quasi–Monte Carlo integration, which allows

us to discard many of the assumptions we used previously and integrate over

19 dimensions without significantly increasing the computation time required to

evaluate the likelihood, resulting in an improved mass resolution.

The remainder of the thesis proceeds as follows: Chapter 2 gives a brief overview

of the relevant physics in the Standard Model for top quark production and decay.

In Chapter 3, the Fermilab Tevatron and the CDF detector are described. Chapter

4 describes the procedure by which we select tt̄ candidate events from the millions

of events per second produced at the Tevatron. Chapter 5 describes the matrix

element procedure by which the likelihood is calculated for signal events, while

Chapter 6 describes how our method handles background events and other events

not well-modeled by our analysis. Chapter 7 shows how we test and calibrate our

method using Monte Carlo simulated events. The actual measured value in data

is presented in Chapter 8, while Chapter 9 discusses the systematic uncertainties

in our measurement. Finally is a brief conclusion in Chapter 10.
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Chapter 2

Top Physics
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In this chapter, I discuss the physics underlying the measurement of the top

quark mass described in this thesis. First is a brief review of the Standard Model,

followed by a discussion of the top quark properties in the Standard Model; finally,

the relation of the top quark measurement to the Higgs is presented.

2.1 The Standard Model

The Standard Model contains our current understanding of nearly all of particle

physics; it relates all observed particles and interactions (with the exception of

gravity). Included are 12 spin-1/2 fermions, which are the constituents of matter,

and four spin-1 bosons, which carry three fundamental forces: the electromagnetic

force, the weak force, and the strong force, with the first two unified into the

electroweak force. In the Standard Model, particle interactions are described by

the gauge group SU(3)×SU(2)×U(1); in addition, the Standard Model posits the

existence of the Higgs boson, whose interactions with other particles is responsible

for the origin of their mass. While the Standard Model has proven enormously

successful, there are several issues that it does not address; for instance, gravity is

not included, and the problem of how to create a unified theory containing gravity

is the subject of much active theoretical work.

The basic particles making up the Standard Model are shown in Figure 2.1.

Fermions are further classified into two types, the quarks and leptons. The quarks

carry color charge and thus interact via the strong force (as well as the other two

forces); there are a total of six quarks (and six corresponding antiquarks) divided

into three generations of increasing mass. Each generation contains one quark

with charge (+2/3)e and one quark with charge (-1/3)e, which are often referred

to as “up-type” and “down-type”, respectively. The leptons do not interact via

the strong force, and there are also six leptons divided into three generations (with

their corresponding antileptons); each generation contains one charged lepton with

charge −e and a corresponding uncharged neutrino.
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Figure 2.1: The fundamental particles included in the Standard Model: the six

quarks, six leptons, and four bosons.
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The masses of the twelve leptons are summarized in Table 2.1 [8]. Note that

since the Standard Model does not predict any of the particle masses, the only

way to determine them is by direct measurement. It was long believed that the

neutrinos had zero mass, but in 1998 evidence from the Super-Kamiokande detector

conclusively indicated the non-zero mass of the neutrino [9]. (As this measurement

only provides information on the difference in neutrino masses, however, the values

listed in Table 2.1 are constraints obtained from direct measurements; the actual

values are generally assumed to be much smaller.) Note the dramatic increase

in quark mass, especially in the top quark, which is substantially more massive

than the next-lightest quark; this was much greater than initially expected and

resulted in the discovery of the top quark taking place much later than the other

quarks. The mass of individual quarks is dependent on the scheme used to define

the mass; Table 2.1 quotes the values obtained in the modified minimal subtraction

(MS) scheme [10], with the exception of the top quark, for which the pole mass is

quoted. How the measured mass can be corrected to obtain the value in the MS

scheme is currently the subject of active debate [11].

2.1.1 The Electroweak Force

The electroweak force is described by a SU(2) × U(1) symmetry group which is

spontaneously broken, resulting in the separate electromagnetic and weak forces.

The electromagnetic force is carried by the photon (γ), a massless spin-1 particle,

which couples to particles carrying electric charge. Because of the masslessness of

the photon, the electromagnetic force can act over long ranges. The weak force

is carried by the W± and Z bosons, which are both quite massive (80.40 ± 0.03

GeV/c2 and 91.188 ± 0.002 GeV/c2, respectively), which results in the weak force

only acting over very short ranges. However, the weak force is unique among the

forces in the Standard Model in that it is the only interaction which can change

the flavor of quarks. Thus, decays of heavier quarks into lighter quarks can only
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Table 2.1: Measured masses for the six quarks and six leptons in the Standard

Model. Uncertainties are not included. For quarks other than the top, the masses

are determined in the MS scheme.

1st generation 2nd generation 3rd generation

Quarks

u c t

1.5 – 3.3 MeV/c2 1.27 GeV/c2 173.1 GeV/c2

d s b

3.5 – 6.0 MeV/c2 105 MeV/c2 4.20 GeV/c2

Leptons

e µ τ

511 keV/c2 105.7 MeV/c2 1.78 GeV/c2

νe νµ ντ

< 2 eV/c2 < 2 eV/c2 < 2 eV/c2
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take place via the weak interaction; this fact often results in clear experimental

signatures for this type of event.

The amplitude of the mixing between quark flavors mediated by the W boson

is described by the CKM matrix, named after its inventors Cabibbo, Kobayashi,

and Maskawa:


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (2.1)

where Vij is the factor attached to a vertex containing a W boson, an up-type

quark i, and a down-type quark j. The terms in the CKM matrix are complex,

and the matrix is required to be unitary in the Standard Model; traditionally, the

matrix is parameterized by three mixing angles and a CP-violating phase. Using

fits which apply the unitarity constraint to direct measurements, the current values

for the magnitudes of the entries [8] are:


0.97419± 0.00022 0.2257± 0.0010 (3.59± 0.16)× 10−3

0.2256± 0.0010 0.97334± 0.00023 (4.15± 0.01)× 10−2

(8.74± 0.32)× 10−3 (4.07± 0.01)× 10−2 0.999133± 0.000044

 (2.2)

2.1.2 The Strong Force

In the Standard Model, the strong force is described by a SU(3) non-Abelian

gauge theory, known as Quantum Chromodynamics (QCD). The strong force acts

on particles which carry color charge (quarks, but not leptons); an individual quark

can carry one of three different colors (red, green, or blue). The strong force is

carried by massless spin-1 gluons, which carry a color and an anticolor charge1;

1In total, one would thus expect there to be a total of nine gluons. However, the gluon

corresponding to the color singlet of the SU(3) group does not exist, so only eight gluons in total
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because of this, the gluons can interact with each other as well as with quarks.

The strong force exhibits two unique properties which make it behave unlike

any other fundamental force. The first is asymptotic freedom, in which interac-

tions become negligibly weak at large momenta or short distances. An important

consequence of this fact is that it is possible to analyze QCD processes (e.g., scat-

tering cross sections) by treating partons (i.e., quarks and gluons) as free particles

independent from others in the event.

The second is color confinement: quarks cannot exist singly, but must always be

bound into color-neutral hadrons, either as three quarks in a baryon, or one quark

and one antiquark in a meson. Attempting to separate the quarks in a hadron

will simply result in more quarks being created from the vacuum, resulting in the

production of more hadrons. This has a very significant experimental implication:

while we can speak of a given process producing a quark, that quark will not

be directly observed in our detector; rather, it will hadronize into a number of

collimated hadrons, known as a “jet”. Measuring the momentum or energy of

these jets, as we will see in Section 3.4.2, is a very difficult task.

2.1.3 The Higgs Mechanism

One might expect that the masses of fermions and the W and Z bosons would

simply appear as mass terms in the Standard Model Lagrangian. However, there

is no way to add the mass terms directly in a gauge-invariant way, and breaking the

gauge invariance would cause non-renormalizable divergences in the theory. Con-

sequently, a more complicated mechanism to introduce masses into the Standard

Model is required; this mechanism is known as the Higgs mechanism [12].

To illustrate the basic principle behind the Higgs mechanism, we consider a

somewhat simplified example [13]. Consider a complex scalar field φ with a quartic

self-coupling term in the potential and a negative “mass” term: L = |∂µφ|2 +

exist.
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µ2φ∗φ − 1
2
λ(φ∗φ)2. Now, the ground state of the field is no longer φ = 0; rather,

the φ field has a vacuum expectation value |φ0| =
√

µ2/λ, causing the symmetry to

be spontaneously broken. If we now add an electromagnetic field to this Lagrangian

and expand the Lagrangian around the new minimum, a positive mass term for

the photon appears. Figure 2.2 illustrates the potential in this simplified case.

2)φ*φ (
2
λ + φ*φ 2µV = - 

)φRe(

)φ
V

(

 vλ2  = µ 2m = 

λ / 2µv = 

v-v

Figure 2.2: The potential for a complex scalar field φ, illustrating the basic principle

of the Higgs mechanism.

Applying the Higgs mechanism to the full electroweak theory (since we don’t

actually want a massive photon) is a little more complex, as the Higgs field is now

a SU(2) doublet of complex fields, but the principle is still the same. Applying the

Higgs mechanism results in the spontaneous symmetry breaking of the SU(2) ×

U(1) electroweak symmetry, causing the W and Z bosons to acquire mass (while

the photon remains massless). A single spin-0 Higgs boson remains, with mass

given by mH =
√

2λv, where λ is the quartic self-coupling of the Higgs field and

v is the vacuum expectation value. This Higgs boson also couples to fermions in

proportion to their mass, thus also accounting for fermion masses.

Because of its importance to the success of the Standard Model, the discovery

of the Higgs boson is a very high priority in the particle physics community, but
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so far no searches have successfully discovered the Higgs. Searches at LEP have

ruled out mH < 114 GeV/c2, while recent searches at the Tevatron have ruled out

160 < mH < 170 GeV/c2 [14]. Figure 2.3 shows the limits on the Higgs mass

obtained from direct searches.

1
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Figure 2.3: Current limits on the Higgs mass set by direct searches at LEP and

the Tevatron.

2.2 Top Quark Phenomenology

The top quark is the heaviest known fundamental particle, with a measured mass,

as of March 2009, of 173.1± 1.3 GeV/c2 [15]. The extremely high mass of the top

quark means that it also decays extremely quickly (approximately 0.5× 10−24 s),

despite the decay being mediated by the weak force. This rapid decay means that,

unlike lighter quarks, the top quark does not hadronize before decaying but rather

decays as a free quark. Consequently, this means that the properties of the top

quark (mass, spin, charge, etc.) can be measured directly through reconstruction

of its decay products.
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Figure 2.4 shows the measurements contributing to the current world average

for the top mass, which represents the most precise measurement so far. The

previous version of this analysis with 3.2 fb−1 of integrated luminosity is the “CDF-

II l+j” entry.

)2 (GeV/ctopm
150 160 170 180 190 200

0

14

CDF March’07  2.2± 1.5 ±12.4 

Tevatron March’09
*

 1.1± 0.6 ±173.1 
  (syst.)±(stat.)  

CDF-II trk
*

 3.0± 6.2 ±175.3 

CDF-II all-j
*

 1.9± 1.7 ±174.8 

CDF-I all-j  5.7±10.0 ±186.0 

D0-II l+j
*

 1.6± 0.8 ±173.7 

CDF-II l+j
*

 1.3± 0.9 ±172.1 

D0-I l+j  3.6± 3.9 ±180.1 

CDF-I l+j  5.3± 5.1 ±176.1 

D0-II di-l
*

 2.4± 2.9 ±174.7 

CDF-II di-l
*

 2.9± 2.7 ±171.2 

D0-I di-l  3.6±12.3 ±168.4 

CDF-I di-l  4.9±10.3 ±167.4 

Mass of the Top Quark (*Preliminary)

/dof = 6.3/10.0 (79%)2χ

hep-ex/0903.2503

Figure 2.4: Individual top mass measurements contributing to the current world

average. The version of this measurement with 3.2 fb−1 of integrated luminosity

is the “CDF-II l+j” entry in this chart.
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2.2.1 Top Quark Production

At the
√

s = 1.96 TeV center-of-mass energy of the Tevatron, the top quark is

expected to be produced primarily in tt̄ pairs; this production can proceed either

by qq̄ annihilation or gg fusion, as depicted in Figure 2.5. At the Tevatron energies,

the next-to-leading order (NLO) prediction is that 15%± 5% of tt̄ production will

come from gg fusion. (Note that at the 14 TeV center-of-mass energies at the LHC,

this ratios will be approximately reversed, as gluons are much more likely to carry

sufficient energy to produce a tt̄ pair.)

Measurement of the top quark pair production cross-section is an active area of

research at the Tevatron; the latest CDF measurement [16] yields σtt̄ = 7.02±0.63

pb (assuming mt = 175 GeV/c2, as there is a slight variation of cross-section with

mass).

g

q̄
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t̄

t

g

g

g

t̄

t

t

g

g

t̄

t

Figure 2.5: Feynman diagrams for tt̄ production via qq̄ annihilation (left) and gg

fusion (center and right).

2.2.2 Top Quark Decay

The top quark decays weakly into a W boson and a down-type quark. As we saw

in Equation 2.2, |Vtb| is nearly unity2. Since the ratio (t → Wb)/(t → Wq) =

|Vtb|2/(|Vtb|2 + |Vts|2 + |Vtd|2), we can see that the quark produced will be a b quark

2Note that this measurement requires the assumption of the CKM matrix being unitary.

Direct measurements of |Vtb| not relying on this asssumption can be made, but this yields a

much weaker constraint of |Vtb| > 0.74 [8].

15



nearly 100% of the time. Consequently, when measuring the top mass, we can

assume that a tt̄ pair will always decay into W+bW−b̄; events can then be futher

classified based upon the decay products of the W , as discussed in Section 4.1.

In addition to the top mass, many other measurements can be performed on

the top decay results, including its width and lifetime, charge, and the properties

of the Wtb coupling. Searches for new physics can also be performed by looking

for decays not allowed or strongly suppressed in the SM such as t → γc.

2.3 Top Quark Mass and the Higgs

Measuring the top quark mass is not only important in itself, but also because

it helps us constrain the Higgs mass. Specifically, radiative corrections to the W

boson mass from Higgs and top loops allow us to relate the top, W , and Higgs

masses. (Other quarks could also contribute, in principle, but as the top quark is

much heavier than the other quarks, its effect is by far the dominant one.)

Figure 2.6 shows the relevant Feynman diagrams for these corrections; specif-

ically, ∆mW ∼ m2
t and ∆mW ∼ ln mH [17], so high-precision measurements of

both the W boson and top quark masses are necessary to obtain good constraints

on the Higgs mass.

W

h

W W

t

b

W W

Figure 2.6: Feynman diagrams for the radiative corrections to the W boson mass

arising from Higgs (left) and top (right) loops.

Figure 2.7 shows the current results of this fit as of March 2009 [18]. The left

plot shows the contours in mW and mt space obtained from LEP2 and Tevatron
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data. The range of Higgs masses is shown in the green band, with the upper edge

of this band corresponding to the 114 GeV/c2 limit set by direct searches at LEP.

The right plot shows the ∆χ2 of the fit as a function of mH .
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Figure 2.7: Results of the electroweak constraints on the Higgs mass as of March

2009. Left: Allowed contours in the mW and mt space. Right: Quality of fit as a

function of mH .

As we can see from these plots, the most-favored Higgs mass actually lies inside

the excluded region, with only a small overlap between the region allowed by direct

search results and the region favored by the electroweak fit. This has, naturally,

fueled speculation of further physics beyond the Standard Model, such as the

Minimal Supersymmetric Standard Model (MSSM), which features a two-Higgs

doublet resulting in five final Higgs particles with somewhat different properties.

In any case, the Higgs boson remains one of the most active areas of research in

particle physics today, and measurement of the top quark mass is an important

contribution to this effort.
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Chapter 3

Experimental Setup
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3.1 The Tevatron Accelerator

The Tevatron accelerator, located at Fermilab, is currently the only particle accel-

erator in the world with sufficient energy to produce top quarks (until the LHC

begins physics operations). The Tevatron consists of the main Tevatron ring, with

two large, general-purpose detectors, CDF and D0, located at interaction points

on the ring, and a complex of accelerators which feeds into the main ring. The

Tevatron began operations in 1985 with a center-of-mass energy of
√

s = 1.8 TeV,

and has been regularly upgraded since then. Run II of the Tevatron, featuring

substantial upgrades to the accelerator and both detectors, began operation in

2001 at a center-of-mass energy of
√

s = 1.96 GeV.

3.1.1 Initial Acceleration

Before reaching the Tevatron, protons go through a multi-stage chain of acceler-

ators; the full complex is depicted in Figure 3.1. First, hydrogen gas is split into

atoms and ionized to H− ions. These ions are accelerated first in a Cockcroft-

Walton accelerator to 750 keV and then further in a 130 m linear accelerator (the

Linac) up to 400 MeV.

From the Linac, the electrons are then stripped from the H− ions and the

resulting protons are injected into the Booster. The Booster is a synchrotron 475

m in circumference which accelerates the protons from an energy of 400 MeV up

to 8 GeV. Finally, from the Booster, the protons are sent to the next accelerator in

the cycle, the Main Injector, a synchrotron 3 km in circumference which accelerates

protons up to 150 GeV for injection into the Tevatron. The Main Injector also

produces protons up to 120 GeV for use in antiproton production as described

below or for fixed-target experiments.
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Figure 3.1: The chain of accelerators making up the Tevatron complex at Fermilab.

3.1.2 Antiproton Production

Antiprotons are produced by directing a beam of 120 GeV protons from the Main

Injector onto a nickel target. The efficiency of antiproton production is approxi-

mately 2 · 10−5 antiprotons produced for each proton incident on the target. The

antiprotons are focused with a magnetized lithium lens and then separated from

other collision products by passing the beam through a magnet which acts as a

spectrometer. The antiprotons are then sent to the Debuncher, which uses stochas-

tic cooling to reduce the variation in momentum of the antiprotons. After being

cooled in the Debuncher, the antiprotons are then stored in the Accumulator, an-

other synchrotron designed to store the antiproton beam for a period of many

hours.

The newest addition to the antiproton production chain is the Recycler, a

synchrotron sharing the tunnel with the Main Injector. Because the Recycler is

much larger than the Accumulator, it can be used to store antiprotons and keep

the Accumulator relatively empty; this improves the overall antiproton production
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performance, since the “stacking rate” (i.e. the rate at which antiprotons can be

stored) decreases with the number of antiprotons already stored. The Recycler has

also implemented electron cooling, in which electrons are injected into antiproton

bunches to reduce the size of the bunch, which allows for a more focused beam.

3.1.3 Tevatron Operation

The Tevatron is a synchrotron 1 km in radius which receives protons and antipro-

tons injected from the Main Injector at 150 GeV and accelerates them to a beam

energy of 980 GeV. The protons and antiprotons are bunched into 36 bunches

each, separated into 3 groups of 12 bunches. Within a group, each set of bunches

is separated by 396 ns, with longer intervals between groups. Large superconduct-

ing dipole magnets operating at 4 K are used to steer the beams, and quadrupole

magnets are located near the two interaction regions at B0 and D0 to reduce the

transverse beam size before collision.

In normal operation, protons and antiprotons are injected into the Tevatron

and circulate for up to a day in a “store”, until beam losses and pp̄ collisions have

reduced the interaction rate sufficiently that the beams are dumped, at which point

preparations for a new store begin. While a store is circulating in the Tevatron,

the antiproton systems build up a new stack of antiprotons. If a store terminates

abnormally (usually due to a “quench”, when a superconducting magnet loses

superconductivity, forcing the beam to be dumped), the Tevatron often must sit

idle while the antiproton stack is built up again.

The Tevatron performance is measured by its luminosity, which measures the

rate of particle collisions. The instantaneous luminosity is given by:

Linst =
fNpNp̄Nb

4πσxσy

, (3.1)

where f is the frequency of bunch collisions, Np and Np̄ are the numbers of protons

and antiprotons per bunch, Nb is the number of bunches, and 4πσxσy represents
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the transverse area of the beam, assuming a Gaussian distribution of particles with

widths σx and σy in the x and y directions.

The integrated luminosity L is simply the integral of the instantaneous lumi-

nosity over a given time period; for a physical process with cross-section σ, the

number of events expected to be produced is equal to Lσ.

The performance of the Tevatron has improved dramatically since the beginning

of Run II; Figure 3.2 shows the instantaneous and integrated luminosities at CDF

as a function of time. The current record (recorded on 4/1/09) for instantaneous

luminosity is 3.47 · 1032 cm−2 s−1. As of July 2009, more than 5 fb−1 of luminosity

has been delivered and stored to tape at CDF.
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Figure 3.2: Instantaneous luminosity at the beginning of stores (left) and inte-

grated luminosity (right) observed at CDF over the Run II period for the Tevatron.

3.2 The CDF Detector

The CDF detector is a general-purpose detector designed to measure the momenta

and energy of objects produced in pp̄ collisions. The detector is cylindrically sym-

metric about the beamline (with a few exceptions) and extends for several meters

through the B0 interaction region.
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Broadly speaking, the detector contains three main components. The innermost

part of the detector is the tracking system, which contains a set of silicon strips

and an open-cell drift chamber inside of a solenoid to measure the momenta of

charged particles. Outside of the solenoid are the calorimeters, which measure the

energies of electrons, photons, and hadrons. Finally, outside of the calorimeters

are the muon chambers, which detect and measure the momenta of muons. These

are described in more detail in the following sections. Figures 3.3 and 3.4 show

the general layout of the CDF detector. (There are also some subsystems which

are not used in tt̄ analyses and thus not described here.)

Figure 3.3: A side view of the CDF detector, with major detector subsystems

indicated.
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Figure 3.4: A cutaway view of the CDF inner detector (left) and whole detector

(right), with the detector subsystems labeled. Note that not all of these systems

are used for study of tt̄ events.

3.2.1 CDF Coordinate System

CDF generally uses a combination of cylindrical and spherical coordinates to de-

scribe locations and directions, as follows:

• The z axis lies along the beamline, with the +z direction defined as the

direction of proton travel (east) and the −z direction the direction of p̄

travel (west). “Longitudinal” refers to components along the z axis, and

“transverse” refers to components perpendicular to the z axis.

• x and y are not commonly used; the +x direction is north, while the +y

direction is up (away from the ground).

• r is the radial distance from the beamline (r =
√

x2 + y2).

• θ is the polar angle from the beamline; tan θ = r/z.

• φ is the azimuthal angle around the beamline; tan φ = y/x.

• η is the pseudorapidity, defined as − ln(tan(θ/2)).

Typically, the position of objects (such as detector components) is described

with r, z, and φ coordinates. The direction of particles is usually measured in (η, φ)
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space. The reason for the latter choice comes from the fact that the distribution

of particles is expected to be roughly uniform in the rapidity Y , where

Y =
1

2
log

E + pz

E − pz

for a particle with energy E and z-momentum pz. Since this is dependent on the

particle mass, it is more convenient to use the purely geometric quantity η, espe-

cially since the mass of particles measured at CDF is generally negligible compared

to their momentum, making Y and η equivalent.

For a particle with momentum p and energy E, we define the transverse mo-

mentum pT and the transverse energy ET as p sin θ and E sin θ, respectively; the

two-dimensional vector transverse momentum is simply the x and y components

of the momentum vector: ~pT = (px, py). The quantity ∆R is often used to measure

distances in η–φ space; it is defined as ∆R =
√

∆η2 + ∆φ2.

3.2.2 Central Tracking

The tracking consists of two major subsystems, the silicon microstrip detector,

which lies closest to the beampipe for high-precision tracking and secondary ver-

tex identification, and the central drift chamber (the Central Outer Tracker or

COT), which provides general-purpose charged-particle tracking. These two sys-

tems are contained in a solenoid which provides a 1.4 T magnetic field to enable

measurement of charged particle momenta.

The silicon detector [19] is, in turn, composed of three separate components.

The main part of the silicon detector, SVXII, extends from r = 2.1 cm to r = 17.3

cm and covers |η| < 2.0. It consists of five layers (numbered 0 to 4) of double-sided

silicon strips; each layer consists of twelve “ladders” arranged radially. The strips

are aligned axially on one side (thus providing a measurement in r–φ coordinates);

the strips on the other side are oriented at either a 90-degree angle (for layers 0, 1,

and 3) or a 1.2-degree angle (for layers 2 and 4) to allow for stereo measurements in
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the z direction. SVXII is divided into three barrels in z extending approximately

45 cm in both directions from the interaction point.

Inside the SVXII is an additional layer, Layer 00 (L00), mounted directly on

the beampipe. This layer consists of single-sided silicon microstrips with improved

resistance to radiation damage to improve the overall resolution of the silicon

tracking. Lying outside of the SVXII is the Intermediate Silicon Layer (ISL),

consisting of a single layer at r = 22 cm for |η| < 1.0 and two layers at r = 20

and r = 28 cm for 1.0 < |η| < 2.0, using double-sided microstrips with small-

angle stereo. The ISL serves to improve linking of tracks between the main silicon

detector and the COT, as well as provide improved silicon tracking in regions not

covered by the COT.

The overall resolution of the silicon systems in the r − φ plane is 11 µm, with

an impact parameter resolution σ(d0) ≈ 40 µm; approximately 35 µm is due to the

transverse size of the Tevatron interaction region. Figure 3.5 shows an end view

of the silicon systems.

The COT [20] is an open-cell drift chamber with a total of 2520 cells organized

into eight superlayers, lying outside the silicon detector and extending to a radius

of r = 137 cm; it covers the range |η| < 1.0. Each cell contains a total of 12 sense

wires and 13 potential wires; the even-numbered superlayers have wires oriented

axially, while the odd-numbered superlayers are offset at an angle of ±2 degrees

for stereo measurements. Figure 3.6 shows the layout of the COT. The COT is

filled with an argon-ethane mix; the drift time for electrons produced by passing

particles to reach the sense wires is designed to be < 100 ns. The central tracker

provides a resolution on the track transverse momentum given by σ(pT )/pT ≈

0.1% · pT /(GeV/c).

The superconducting solenoid lies outside the COT and provides the magnetic

field necessary for measuring charged particle momenta in the central tracking

systems. It is made of an aluminum-stabilized NbTi conductor, and is capable of
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Figure 3.5: A cross-sectional view in the r–φ plane of the locations of the three

components of the silicon detector, Layer 00, SVXII, and ISL.

Figure 3.6: An end view of a 60-degree sector of the COT. The eight superlayers

and the individual cells making up each superlayer are displayed.
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operation up to 1.5 T; it is typically operated at a current of 4650 A which provides

a field of 1.4 T in the −z direction. The solenoid is contained inside a cryostat

where it is cooled with liquid helium.

3.2.3 Calorimetry

The calorimeters are located outside the solenoid and consist of alternating layers

of absorbing material and scintillators. They are designed to absorb and measure

the energy of electrons, photons, and hadrons. Overall, the calorimeter consists

of two different layers. The innermost layer, the electromagnetic calorimeter, is

designed to stop electrons and photons and uses lead as the absorbing material.

The outer layer is the hadronic calorimeter, which is designed to measure charged

and neutral hadrons and uses steel as the absorbing material. The calorimeter is

also split into two halves, one covering η > 0 and the other η < 0.

The depth of the calorimeter is measured in radiation lengths X0 for the elec-

tromagnetic calorimeters, where one radiation length corresponds to the distance

over which a high-energy electron will be reduced to 1/e of its original energy by

bremsstrahlung, and 7/9 of the mean free path for pair production by a high-energy

photon [8]. For the hadronic calorimeters, the depth is measured in interaction

lengths λ, where λ is the mean distance a hadron travels before undergoing an

inelastic interaction with a nucleus.

There are five separate subsystems in the calorimeter overall. The central

electromagnetic calorimeter (CEM) [21] covers |η| < 1.1 and contains 31 layers of

lead and scintillator. The calorimeter is organized into “towers” in a projective

geometry in η and φ pointing towards the center of the detector, with ten groups in

η on either side of the interaction point and 24 wedges in φ. (Two of the towers are

removed for cryogenic services for the solenoid, resulting in a total of 478 towers.)

Two photomultiplier tubes are used to read out the light from the scintillators for

each tower.
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The hadronic calorimeter in the central region consists of two separate over-

lapping systems, the central hadronic calorimeter (CHA) and endwall hadronic

calorimeter (WHA) [22], which together cover the region |η| < 1.2, with a total

of 12 groups in η on either side of the interaction point and 24 wedges in φ. The

CHA towers are 32 layers of steel and scintillator, while the WHA towers total 15

layers.

The forward region 1.1 < |η| < 3.6 is covered by the plug calorimeters. The

plug electromagnetic calorimeter (PEM) [23] is made up similarly to the CEM,

with 23 layers of lead and scintillator, organized into 12 tower groups in η on each

side, while the plug hadronic calorimeter (PHA) [24] contains 23 layers of iron and

scintillator organized into 11 tower groups in η on each side.

The electromagnetic calorimeters also contain additional systems located ap-

proximately six radiation lengths deep (which is where the electromagnetic shower

produced by particles in the EM calorimeter is expected to reach its maximum) to

measure the transverse profile of the showers to improve particle identification. In

the CEM, this detector (the central electromagnetic shower maximum detector, or

CES) consists of strip and wire chambers, while in the PEM this detector is made

of two layers of crossed scintillating strips.

The resolution and depths of the various calorimeter subsystems is summarized

in Table 3.1.

3.2.4 Muon Detection

We expect that the calorimeters will absorb nearly all particles produced in pp̄

collisions. Neutrinos are, of course, expected to escape the detector completely

undetected, but muons are also expected to pass through the calorimeters, as

muons produced with energies typical of pp̄ collisions are minimum-ionizing parti-

cles and lose little energy to bremsstrahlung. Consequently, CDF has additional

drift chambers and scintillators located outside the calorimeter to detect and mea-
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Table 3.1: Resolution for a single particle (e.g., an electron in the EM calorime-

ters, or a pion in the hadronic calorimeters), depth, and coverage of the different

calorimeter subsystems. Note that because the CHA and WHA overlap, the depth

that a given particle sees may be greater than the listed value for the individual

detectors.

System Resolution (%) Coverage Depth

CEM 13.5/
√

ET /GeV⊕ 2 |η| < 1.1 19X0

PEM 16/
√

ET /GeV⊕ 1 1.1 < |η| < 3.6 21X0

CHA 50/
√

ET /GeV⊕ 3 |η| < 0.9 4.5λ

WHA 75/
√

ET /GeV⊕ 4 0.8 < |η| < 1.2 4.5λ

PHA 80/
√

ET /GeV⊕ 5 1.2 < |η| < 3.6 7λ

sure these muons.

There are three separate muon systems of importance to tt̄ analyses. (There

are also some additional systems at higher |η| ranges which are not used for tt̄

measurements and hence not discussed here.) The first is the central muon system

(CMU) [25], which is located directly outside of CHA. The CMU consists of four

layers of wire chambers operated in proportional mode, and covers a range of

|η| < 0.6.

Although the calorimeter is designed to absorb all hadrons, there is still a non-

negligible rate of “punch-through” of hadrons which traverse the calorimeter and

reach the CMU. To reduce the background rate in the CMU due to this punch-

through, an additional set of chambers was built to make the central muon upgrade

(CMP). Unlike most of CDF, CMP is not cylindrically symmetric, as it uses the

steel of the magnet return yoke as additional shielding; consequently, it forms a

rough box around CDF. CMP covers the same |η| range as CMU, and muons in
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this region are required to record hits in both CMU and CMP in order to improve

the signal-to-background ratio. These muons are thus called CMUP muons.

The central muon extension (CMX) covers the range 0.6 < |η| < 1.0 and is

shaped like a truncated cone outside of the CMP. Like CMU and CMP, it consists

of wire chambers arranged in four layers. Due to the presence of the floor, the

CMX geometry is slightly changed in the bottom quadrant, where it instead takes

a fan arrangement (known as the “miniskirt”).

In addition to the drift chambers, there are also scintillator tiles on the outside

of the CMP and CMX for trigger and timing purposes. Because the drift time

in the muon chambers can be quite long (much longer than the time between

bunch collisions), these scintillator tiles can be used for fast triggering and correct

association of hits in the muon chambers.

A track observed in the muon chamber is referred to as a “stub” and must be

matched to a corresponding track in the COT in order to be identified as a muon.

The muon identification algorithm is discussed further in Section 3.4.1.

3.3 Trigger and DAQ

Given the bunch crossing rate of 1.7 MHz at CDF, saving the full output of the

detector for all events would be prohibitively impractical. However, only a small

fraction of events actually contain interesting physics. The trigger system is a

three-layer system which progressively reduces the event rate to a much smaller

rate suitable for saving events to tape. Many different trigger paths are defined to

collect events for the different analyses performed at CDF.

3.3.1 Level 1 Trigger

The Level 1 trigger is responsible for reducing the event rate to approximately 20

kHz; it use specialized hardware and reads out only some parts of the detector

31



which can be quickly read out. The three main components of the L1 trigger

are the XFT (eXtremely Fast Tracker), which provides quick reconstruction of

particle tracks with pT > 1.5 GeV/c in the COT with a resolution of σ(pT )/pT ≈

2% ·pT /(GeV/c) [26]. The XFT also passes tracks it finds to the extrapolation unit

(XTRP), which extrapolates track trajectories into the CMU to look for matches

with muon stubs. The L1 trigger also includes information from the calorimeter

towers.

3.3.2 Level 2 Trigger

The Level 2 trigger reduces the event rate further to ∼ 300 Hz, and features two

main pieces of dedicated hardware. The first is the silicon vertex tracker (SVT)

[27], which uses the silicon tracking information to look for displaced secondary

vertices. The second clusters the energy deposited in the calorimeters to improve

the selection requirements for calorimeter-based triggers.

3.3.3 Level 3 Trigger

The Level 3 trigger runs a full event reconstruction, and features an output rate of

∼ 75-100 Hz. Events which pass the Level 3 trigger are saved to tape. The event

reconstruction is carried out by a dedicated PC farm which uses an optimized

version of the offline reconstruction code and utilizes the full detector information

available to select events, including full three-dimensional track reconstruction.

3.3.4 Top Triggers

There are three different triggers used for collecting tt̄ candidates. The CEM

trigger selects high-ET electrons in CEM, the CMUP trigger selects high-pT muons

in CMU and CMP, and the CMX trigger selects high-pT muons in CMX.

Specifically, the CEM trigger requires, at level 1, a COT track with pT > 8

GeV/c pointing to a CEM tower with ET > 8 GeV and a ratio of electromagnetic
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to hadronic energy Ehad/Eem < 0.125. At level 2, the calorimeter clustering is

performed, and the requirement is a cluster with ET > 16 GeV matched to a

pT > 8 GeV/c track. Finally, at level 3, the final reconstructed energy of the

electron is required to pass ET > 18 GeV with a matching track of pT > 9 GeV/c.

The Ehad/Eem < 0.125 requirement is also enforced at levels 2 and 3.

The CMUP trigger requires, at level 1, a track with pT > 4 GeV/c matched to a

stub in CMU and CMP hits consistent with the observed CMU hits. No additional

requirements are made at level 2; level 3 requires a final reconstructed COT track

of pT > 18 GeV/c matched to stubs in CMU and CMP. The CMX trigger operates

very similarly, but requires a track of pT > 8 GeV/c at level 1 matched to a CMX

stub.

3.4 Event Reconstruction

After an event has been accepted, a full event reconstruction is performed offline;

at this stage, raw tracks and clusters are identified as electrons, muons, jets, and

other objects.

3.4.1 Lepton Identification

While the triggers described in Section 3.3 apply basic selection requirements, the

offline reconstruction allows us to apply more comprehensive electron and muon

selection requirements to obtain very high-quality lepton identification [28]. The

following describes the standard cuts used for electron and muon identification at

CDF.

The final electron cuts, which are summarized in Table 3.2, are as follows:

• To be accepted as a tight CEM electron, the electron must have |η| < 1.0

and ET > 20 GeV matched to a COT track passing various track quality

cuts.
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• To further reject showers from hadrons, the Ehad/Eem cut is tightened to

Ehad/Eem < 0.055+0.00045·E/GeV. The additional linear term accounts for

the fact that higher-energy electrons will leak more energy into the hadronic

calorimeter.

• The ratio of the calorimeter energy to the COT track momentum, E/p (=

ET /pT ), is required to be at most 2.0 if ET < 100 GeV. (Above 100 GeV

this cut becomes unreliable and is not used.)

• Lshr, a variable describing the match of the lateral profile shape to the ex-

pected shape for electrons derived from test-beam data, must be < 0.2.

• A χ2 comparison is used to compare the shape of the profile measured in the

CES to the expected profile and χ2
strips < 10.0 is required.

• The distances between the extrapolated COT track and the position of the

CES cluster, ∆x in the r–φ plane and ∆z in the r–z plane, are required to

satisfy −3.0 cm < Q ·∆x < 1.5 cm and |∆z| < 3.0 cm, where Q is the sign

of the charge.

• Conversions (pair production by interactions of a photon with the detector

material) are rejected by searching for a track with opposite sign, ∆(xy) < 2

mm, and |∆(cot θ)| < 0.04, where ∆(xy) is the distance in the r–φ plane at

the point where the tracks are parallel. If such a track is found, the electron

is assumed to come from a pair production and is rejected.

• To identify the electron as coming from a W decay (as opposed to a decay

of a heavy-flavor hadron), the electron is required to be isolated from other

sources of energy in the calorimeter. This is enforced by measuring other

energy in a cone of radius ∆R = 0.4 around the electron; the ratio of this

other energy (not including the electron itself) to the electron energy must

be less than 0.1.
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Table 3.2: Selection requirements applied for electron identification.

Variable Required Value

ET > 20 GeV

|η| < 1.0

Ehad/Eem < 0.055 + 0.00045 · E/GeV

E/p < 2.0 if ET < 100 GeV

Lshr < 0.2

Q ·∆x > −3.0 cm and < 1.5 cm

|∆z| < 3.0

χ2
strips < 10.0

Conversions Rejected

Isolation < 0.1
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The cuts used to identify muons, which are summarized in Table 3.3, are:

• To be identified as a tight CMUP or CMX muon, we require pT > 20 GeV/c

and |η| < 1.0.

• The energy deposited in the calorimeter is required to be consistent with a

minimum ionizing particle. This is enforced by requiring Eem < 2 GeV and

Ehad < 6 GeV for p < 100 GeV/c and Eem < 2 + (p/(GeV/c)− 100) · 0.0115

and Ehad < 6 + (p/(GeV/c)− 100) · 0.0280 for p > 100 GeV/c.

• The distance |∆X| between the extrapolated COT track and the stub in the

muon chambers is required to be < 3.0 cm in CMU, < 5.0 cm in CMP, and

< 6.0 cm in CMX.

• For CMP and CMX, the extrapolated tracks are also required to lie at least

3 cm away along the wire axis from the edges of the muon chambers to avoid

chamber edge effects.

• Muons originating from cosmic rays are identified by an algorithm which

looks for tracks passing through the detector and rejected.

• Like electrons, an isolation cut of < 0.1 is applied to the muon to require it

to come from W decay.

3.4.2 Jet Identification and Correction

As described earlier in Section 2.1.2, bare partons are, of course, not directly

observed in our detector; rather, they produce a shower of collimated hadrons

known as a “jet”. By measuring the energy of a jet, we can thus get an estimate

of the energy of the parton which originated it; this process involves a series of

corrections to the raw measured jet ET . However, this introduces several significant
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Table 3.3: Selection requirements applied for muon identification.

Variable Required Value

ET > 20 GeV

|η| < 1

Eem < max(2, 2 + (p/(GeV/c)− 100) · 0.0115)

Ehad < max(6, 6 + (p/(GeV/c)− 100) · 0.0280)

|∆X| < 3.0 cm (CMU)/5.0 cm (CMP)/6.0 cm (CMX)

Distance from edge along z-axis > 3.0 cm (CMP and CMX)

Cosmic rays Rejected

Isolation < 0.1

sources of systematic uncertainties, which in turn results in a potentially large

source of uncertainty in our final measurement.

Jets are identified using a jet clustering algorithm known as JetClu [29]; briefly,

JetClu identifies seed towers in the calorimeter with an energy of at least 1 GeV and

adds groups of clusters in the electromagnetic and hadronic calorimeters within a

cone of radius ∆R = 0.4 to the seed. The centroid of the jet is then calculated by

summing the η and φ positions of the towers weighted by their ET and a new list

of towers around the new center is calculated; this process is repeated iteratively

until it converges. These measurements provide a resolution of approximately

σ(ET ) ≈ 0.1 · ET + 1.0 GeV.

After the raw jet ET is calculated, a series of corrections is applied [30]. There is

a total of five levels of corrections, numbered 1 through 7 (levels 2 and 3 correspond

to corrections which are no longer used).

The relative correction (level 1) accounts for the η dependence of the calorimeter
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response, primarily arising from the “central crack” at η = 0 where the two halves

of the calorimeter meet and the region at |η| ≈ 1.1 where the central and plug

calorimeters meet. This correction is derived from dijet events where one jet is

required to be in the central region of the central calorimeter, 0.2 < |η| < 0.6,

and assuming that the pT of the two jets (in the absence of hard QCD radiation)

should balance.

The multiple interactions correction (level 4) accounts for the different calorime-

ter response as a function of the number of different pp̄ interactions occurring in

a single bunch crossing; the number of interactions is measured by the number of

vertices along the beamline, or z-vertices. This correction is obtained by taking

minimum bias data and measuring the amount of energy in a randomly-selected

cone in the central calorimeter region 0.2 < |η| < 0.6 as a function of the number

of observed z-vertices in the event.

The absolute correction (level 5) is designed to convert the measured jet energy

into the energy of the underlying particle, accounting for the nonlinear response

of the calorimeter. This correction is derived by using pythia Monte Carlo dijet

events and comparing the measured and true jet pT in these events.

There are also two corrections which we do not actually use in defining the jet

energies in our measurement, but for which the systematic uncertainties need to

be taken into account. These are the corrections for the underlying event (level

6) and out-of-cone energy (level 7). The “underlying event” refers to the fact that

partons in the parent pp̄ system which do not take place in the main interaction

can also be responsible for producing energy measured in the jets, while the out-

of-cone energy refers to particles that escape the cone of ∆R = 0.4. These are also

measured using pythia and herwig Monte Carlo dijet samples.

The systematic uncertainties for these corrections are summarized in Figure

3.7. These uncertainties total approximately 3% for high-pT jets and can be up to

10% for lower-pT jets; if taken directly as a systematic on our final measurement,
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this would be by far our largest single source of uncertainty. However, since we use

events which contain a W boson decaying to hadrons, we can use the known mass

of the W boson to obtain an additional constraint to the jet energy scale (JES) in

our measurement. This technique is discussed further in Section 5.2.
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Figure 3.7: Systematic uncertainties on the measurement of jet energies as a func-

tion of jet pT for central jets.

3.4.3 Missing ET

Because neutrinos produced are expected to escape undetected, we can infer their

presence by looking for imbalances in the energy in the detector. We define the

missing ET , 6ET , as follows:

6ET =

∣∣∣∣∣ ∑
i∈towers

ETi
n̂Ti

∣∣∣∣∣ , (3.2)

where the sum is performed over all calorimeter towers, n̂Ti
is the unit vector in the

x–y plane pointing from the primary vertex to tower i, and ETi
is the uncorrected

ET measured in that tower.
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This raw measurement is corrected with two further corrections [31]. As muons

only deposit a small fraction of their energy in the calorimeter, if isolated high-pT

muons are found in the event, the energy deposited by the muon in the calorimeter

is subtracted and replaced by the muon ~pT . The 6ET is also corrected to take into

account the corrections applied to the ET of jets in the event.

3.4.4 Secondary Vertex Identification

When a b quark is produced in a tt̄ decay, it hadronizes into a B hadron with a

lifetime of ∼ 1.5 ps. These hadrons are sufficiently energetic that they can travel

several millimeters in the lab frame before decaying; thus, the particles produced

in this b decay will form a vertex displaced from the primary vertex. Identification

of these secondary vertices is thus of primary importance in finding b quarks and

hence tt̄ decays; the CDF silicon system described in Section 3.2.2 is primarily

designed for this purpose.

The algorithm, known as SECVTX [32], operates as follows. Given a jet, the

charged particle tracks in the jet are subjected to some quality cuts requiring a

number of good-quality silicon hits and a good χ2 for the fits of those silicon hits

into a track. The algorithm then tries to reconstruct a secondary vertex with at

least three tracks of pT > 0.5 GeV/c, of which one must have pT > 1.0 GeV/c,

or a vertex with at least two tracks of pT > 1.0 GeV/c. If a secondary vertex

is located, then the two-dimensional decay length L2D is calculated by projecting

(in the r–φ plane) the vector from the primary vertex to the secondary vertex

onto the jet axis. Figure 3.8 illustrates this process. A jet is considered tagged if

L2D > 7.5σL2D
, where σL2D

, the uncertainty on L2D, is approximately 190 µm.

In order to measure the efficiency of the tagging algorithm for tt̄ events, a two-

step strategy is used. First, we measure the tagging efficiency in a sample enriched

in heavy flavor; specifically, we select events with two back-to-back jets, where one

of the jets is required to contain a low-pT electron. We assume that the electron
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Primary vertex

Secondary vertex

Jet axis

2DL

Figure 3.8: An illustration of a b-jet in the r–φ plane showing how L2D is derived

from the positions of the primary and secondary vertices. The value of L2D is used

to determine whether the jet originates from a b quark.

is produced by the decay of a heavy-flavor hadron, and so the other jet is also

likely to originate from a heavy-flavor parton. Then, we can measure the tagging

efficiencies in data and Monte Carlo. Because the Monte Carlo does not model the

secondary vertex tagging precisely, there is a “scale factor” between the data and

Monte Carlo efficiencies of approximately 0.95. The tagging efficiencies for jets in

tt̄ data can then be estimated by multiplying the tagging efficiencies obtained from

tt̄ Monte Carlo by this scale factor.

It is also important to know the mistag rate, that is, the rate of jets not

originating from a heavy flavor quark which are nevertheless tagged by SECVTX.

This is mostly caused by random combinations of tracks displaced from the primary

vertex. We begin our estimate of the mistag rate by assuming that mistags are

equally likely to have a negative L2D, which can clearly not be produced by an

actual physical process, as a positive L2D, and thus the mistag rate of jets with a
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positive L2D is equal to the rate at which jets are tagged with a negative L2D value;

this rate can be measured directly from jet data samples. Because the mistag

rate is not quite symmetric in L2D because of long-lived particles and detector

interactions, two corrections are applied to account for this asymmetry; these

corrections are derived by fitting Monte Carlo templates of the signed vertex mass

(the invariant mass of the tracks reconstructed in the vertex, multiplied by the

sign of L2D) for b, c, and light jets to the distribution in data.

The overall tagging efficiency and mistag rates as functions of jet ET and η for

b-jets in tt̄ events are shown in Figure 3.9. As we can see, the efficiency for tagging

b-jets is typically around 40% with a mistag rate of less than 2%.
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Figure 3.9: Tagging efficiency for b-jets in tt̄ events (top) and mistag rates (bottom)

as a function of jet ET (left) and η (right). Our analysis uses the “tight” SECVTX

tagging algorithm as described in the text.
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Chapter 4

Event Selection
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4.1 The Lepton + Jets Topology

As mentioned in Section 2.2, top quarks can be produced at the Tevatron either in

tt̄ pairs or singly. However, looking for tt̄ pair events is experimentally favorable for

two reasons: first, the cross section for tt̄ production at the Tevatron is currently

measured by CDF at 7.0 ± 0.6 pb [16], which is much larger than the currently-

observed cross-section for single-top production of 2.3+0.6
−0.5 pb [33]; and second, the

additional top quark in tt̄ events means that the overall experimental signature is

much cleaner. In fact, while the top quark was first discovered in tt̄ production in

1995, the discovery of single-top production did not happen until this year (2009).

For these reasons, we focus on tt̄ events.

We can further classify tt̄ events based on their decay properties. As previously

noted in Section 2.2.2, in the Standard Model, top quarks decay into a W boson

and a b quark almost 100% of the time, so the decay chain is always expected to

begin tt̄ → W+bW−b̄. The W bosons can then decay two different ways:

• W → eνe, µνµ or τντ (“leptonic” decay)

• W → qq̄′ (“hadronic” decay)

The W → τ channel poses serious experimental difficulties, due to the subse-

quent decay of the τ (either into other leptons via τ → ντ`ν` or via a hadronic

decay such as τ → π−π0ντ ) which produces at least one more neutrino and other

objects, so events with W → τ decay are typically discarded; thus, when we refer

to “leptonic” decay, we mean specifically an electron or muon. We can classify

the non-τ events as “dilepton” events, where both of the W s decay leptonically,

“all-hadronic” events, where both of the W s decay hadronically, or “lepton+jets”

events, where one of the W s decays hadronically and the other leptonically.

The branching ratios for each of these three channels is shown in Figure 4.1.

Each of these channels has its own advantages and disadvantages.
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Figure 4.1: Branching ratios for the dilepton, lepton+jets, and all-hadronic chan-

nels in tt̄ decay.

• The dilepton channel, because of the presence of two high-energy leptons,

offers a good signal-to-background ratio. However, the branching ratio is

the lowest for this channel.1 Furthermore, because of the two neutrinos, the

kinematics of the event are underconstrained.

• The lepton+jets channel represents a compromise: the experimental signa-

ture is still relatively clean thanks to the high-energy lepton, but the branch-

ing ratio is still reasonably large. With only one neutrino, the event can be

kinematically reconstructed. Furthermore, the presence of the hadronic W

allows for an in-situ technique to calibrate the jet energy scale, as mentioned

in Section 3.4.2.

• The all-hadronic channel has the largest branching ratio, providing a large

1To compensate, dilepton analyses at CDF usually do not require a b-tag in their event selec-

tion, which actually means that their signal-to-background ratio is worse than in the lepton+jets

channel.
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sample of events. However, with no leptons present, the background from

QCD events is very significant and sophisticated techniques are necessary to

improve the signal to background ratio. The in-situ W techniques can also

be applied here.

This measurement is performed in the lepton+jets channel, as it tends to offer

the best balance between these competing goals; in fact, the best measurements

of the top quark mass to date (including this measurement) have all been in the

lepton+jets channel. Figure 4.2 shows a Feynman diagram for a typical lepton+jets

event.

t W+

t̄ W−

q̄

q

b̄

ν̄

`−

q̄′

q

b

Figure 4.2: Feynman diagram for a typical lepton+jets event.

A note on terminology: In lepton+jets events, we refer to the t → Wb → `νb

side of the event as the “leptonic side”, and the t → Wb → qq̄′b side of the event

as the “hadronic side”. By extension, the t and b quarks on the hadronic side are

referred to as the “hadronic t” and “hadronic b”, while the t and b quarks on the

leptonic side are the “leptonic t” and “leptonic b”. It should be noted that these

terms do not refer to the decay of the t or b themselves, but simply of the decay of

the W on that side of the event. We also often refer to the two quarks produced

by the hadronic W as “light” quarks, although of course some of these are actually
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c quarks.2

4.2 Event Signature

Events in the lepton+jets channel, in total, produce four quarks (two b and two

light quarks), a lepton, and a neutrino. We thus would expect to see in our detector

four high-ET jets, of which two would originate from b quarks, one high-pT lepton,

and 6ET from the neutrino. Consequently, we apply the following cuts:

• For the jets, we require exactly four jets with a corrected ET (as described

in Section 3.4.2) of at least 20 GeV in the region |η| < 2.0. At least one of

the jets must be tagged as a b-jet using the algorithm described in Section

3.4.4. (The event may contain any number of jets with ET < 20 GeV.)

• For the lepton, we require at least one identified electron with ET > 20

GeV or one identified muon with pT > 20 GeV/c in the central region of

the detector (|η| < 1.0), using the identification requirements described in

Section 3.4.1. Events with more than one lepton passing these requirements

are rejected.

• For the neutrino, we require 6ET > 20 GeV.

There are several non-tt̄ processes which can mimic this signature, and thus

need to be considered as potential background. The three main sources of back-

ground are:

• “W + heavy flavor” (or “W + HF”), events where a W boson is produced

in association with jets containing heavy flavor (bb̄, cc̄, or c) and other jets.

As these events contain a real W and a correct b-tag, this is an unavoidable

background source. However, the production of real heavy flavor is relatively

low, so this background source does not overwhelm our signal.

2There is also a very small number of b quarks produced by W → cb decay.
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• “W + light”, events where a W boson is produced in association with jets

not containing heavy flavor, but where one of the jets is mistagged as a b-

jet. The amount of this background is naturally dependent on the mistag

performance of our tagging algorithm. Since W + light production is much

more common than W + HF, the mistag rate needs to be low in order to

keep this background source low.

• “Non-W QCD”, QCD events where no true W boson is produced but both

a fake lepton and fake 6ET are created (the former from the misidentification

of a jet as a lepton and the latter usually from a jet escaping into a non-

instrumented region of the calorimeter). Since QCD events are produced

in much greater quantities than W -containing events, this background is

potentially a very large source but is reduced significantly by the selection

cuts.

These first two categories are often referred to collectively as “W + jets” back-

grounds. There are also some smaller sources of background, which contribute

much less than the above three but should still be noted:

• Single top production. These events contain a real W and two real b quarks,

but the cross-section is lower for single top production to begin with, and

these events also need two other high-energy jets to mimic the tt̄ signature, so

these are a relatively smaller contribution. (These also tend to have different

kinematic properties from tt̄ events, as the second b jet tends to have lower

momentum.)

• Diboson production (WW , WZ, or ZZ). Like single top, these require extra

jets to mimic the tt̄ signature and also have a relatively small cross-section.

• Z → `` + jets. If a Z decays into two leptons (one of which is misidentified

or missed) and is produced in conjunction with several other jets, it can
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reproduce the tt̄ signature. While the cross-section for single Z production

is relatively high, the acceptance for these events to pass the tt̄ cuts is quite

low.

4.3 Data Samples

The data used in this analysis is collected by the CEM, CMUP, and CMX triggers

described in Section 3.3, and then the selection criteria described in Section 4.2

are applied. This analysis uses data collected by the CDF II detector over a period

from February 4, 2002 to March 21, 2009, with a total of 4.3± 0.3 fb−1 of integrated

luminosity.

The condition of the detector has changed over time; to take this into account,

the data is divided into 24 run periods, each with appropriate efficiencies and

corrections. Table 4.1 shows the number of events observed in each run period.

Note that we separate events with 1 b-tag from events with 2 (or more) b-tags.

The latter sample has a much lower background rate, but of course also fewer

events.

4.4 Background Estimation

As mentioned above, a certain fraction of the events passing our selection cuts will

not be true tt̄ events, but rather background. Since the background events do not

contain any useful information on the top mass (the single top events, of course,

do contain some information but are still not useful if reconstructed as tt̄ events),

it is necessary to adopt a strategy to minimize their effect on the reconstructed top

mass, so we need to know the expected contributions of each of the above back-

ground types to the overall observed total. We use a method originally developed

for the tt̄ cross-section measurement [34] (where precise background knowledge is

even more important), known as “Method II For You”. Below is a summary of the
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Table 4.1: Data samples used in this analysis, corresponding to a total integrated

luminosity of 4.3 fb−1. “Tagged events” is the total number of events passing our

selection cuts.

Period Dates Lum. (pb−1) Tagged events 1-tag ≥ 2-tag

0 2/4/02-8/22/04 318 70 56 14

1-4 12/7/04-9/4/05 360 77 59 18

5-7 9/5/05-2/22/06 258 53 42 11

8 6/9/06-9/1/06 166 24 17 7

9 9/1/06-11/22/06 153 33 26 7

10 11/24/06-1/30/07 243 51 37 14

11 1/31/07-3/30/07 230 43 31 12

12 4/1/07-5/13/07 155 23 19 4

13 5/13/07-8/4/07 268 42 33 9

14 10/28/07-12/3/07 31 9 9 0

15 12/5/07-1/27/08 156 30 25 5

16 1/27/08-2/27/08 101 12 11 1

17 2/28/08-4/16/08 183 24 22 2

18 4/18/08-7/1/08 305 55 45 10

19 7/1/08-8/24/08 207 32 27 5

20 8/24/08-10/4/08 227 33 21 12

21 10/12/08-1/1/09 436 63 54 9

22 1/2/09-2/10/09 266 42 37 5

23 2/15/09-3/21/09 201 22 19 3

Total 2/4/02-3/21/09 4264 738 590 148
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technique used; for full details, please consult the preceding paper.

The basic principle of Method II is to use Monte Carlo simulation to esti-

mate the background contributions from sources where the Monte Carlo is well-

understood and models the data well; for channels where the Monte Carlo is known

not to model the data contributions well, it employs a data-based approach.

Method II operates on both the “pretag” sample, the sample derived from

applying all of the tt̄ selection requirements except for the tagging requirement,

and the “tagged” sample, which includes the tag requirement, using them together

to arrive at a final answer. The method begins with the assumption that the

number of observed events in both the pretagged and tagged samples is equal to

the sum of the known contributions:

Nobs = Ntt̄ + NW+jets + Nnon-W QCD + Nsingle top + Ndiboson + NZ+jets. (4.1)

The first step is to estimate the contribution for samples well-modeled by the Monte

Carlo. This includes the single top, diboson, and Z + jets backgrounds, as well as

the tt̄ contribution itself. For each of these samples (note that the two production

channels for single top, s-channel and t-channel, are computed separately), the

estimated total is calculated by multiplying the theoretical cross section by the

integrated luminosity and the event selection efficiency derived from Monte Carlo:

Ni = σi · εi · Lint, for i = tt̄, single top, diboson, and Z + jets, (4.2)

where σi is the theoretical cross-section, εi is the event selection efficiency, and

Lint is the integrated luminosity. These contributions are calculated for both the

pretag and the tagged sample. The latter includes an efficiency for the tagging,

which is corrected by the scale factor as discussed in Section 3.4.4. (Note that the

tt̄ contribution for this calculation is determined by assuming mt = 172.5 GeV/c2

with a cross-section of 7.4 pb.)

The second step is to estimate the fraction of non-W QCD events. Because of

the complexity of modeling QCD events in Monte Carlo, this contribution cannot
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be accurately estimated using a Monte Carlo–based approach. Instead, Method II

uses data sidebands to estimate the non-W QCD contribution. For electrons, the

data sideband used is an “antielectron” sample, which consists of electrons that

fail two of the selection requirements discussed in Section 3.4.1, and for muons, the

data sideband used consists of events with muons which pass all of the selection

requirements except for the isolation requirement. In general, the non-W QCD

events have a lower 6ET distribution than the W + jets events, so this can be used

to separate the two.

In the pretag sample, the non-W QCD fraction is estimated by performing a fit

to the observed 6ET distribution using two templates: the W + jets 6ET distribution

derived from Monte Carlo, and the non-W QCD 6ET distribution derived from the

data sideband. The tagged sample is also fit similarly. After the non-W QCD

fraction is calculated, the number of expected non-W QCD events is calculated

using this fraction:

NQCD = fQCD ·Nobs, (4.3)

where fQCD is the non-W QCD fraction as calculated above.

Now, for both the pretag and tagged samples, these contributions are sub-

tracted from the total, leaving the remainder as the number of W + jets events:

NW+jets = Nobs −Ntt̄ −Nsingle top −Ndiboson −NZ+jets −Nnon-W QCD (4.4)

The final step is thus to divide up the number of W + jets events into the W + HF

and W + light contributions. We know that the Monte Carlo simulation models

the relative contributions of W + HF and W + light to the W + jets total well,

but the overall normalization is unreliable, which is why the method adopts this

approach rather than simply estimating the W + jets contribution from Monte

Carlo. Hence, Monte Carlo simulation is used to calculate fHF, the fraction of W

+ jets events containing heavy flavor, and then the tagging efficiency (including

the scale factor defined in Section 3.4.4) is used to estimate the number of W +
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HF events in the tagged sample:

N tag
W+HF = Npretag

W+jets · fHF · εtag. (4.5)

Similarly, the expected number of tagged W + light events is calculated by applying

the mistag rate as mentioned in Section 3.4.4:

N tag
W+light = (Npretag

W+jets −Npretag
W+HF ) · εmistag. (4.6)

Table 4.2 shows the expected number of background events calculated using this

method for the 4.3 fb−1 sample. Overall, in our sample of 738 events, we expect a

total of 173.1± 50.0 background events.

4.5 Monte Carlo Samples

We use a variety of Monte Carlo simulated samples in constructing and evaluating

our method. For tt̄ signal events, we use events generated at a range of top masses

from 160 to 184 GeV/c2 using the pythia Monte Carlo generator [35]. We also

crosscheck our analysis using tt̄ signal events generated with the herwig gener-

ator [36]. There are also a number of samples needed to evaluate our systematic

uncertainties where various parameters have been changed to reflect our uncer-

tainty in modeling a particular aspect of tt̄ events; these are discussed more fully

in Chapter 9.

For the background, the W + jets samples are simulated using the alpgen

generator with the parton showering performed by pythia [37]. These samples

are generated with a specific number of partons in the matrix element; for instance,

the W + bb̄ contribution includes samples with W + bb̄ + 0p, W + bb̄ + 1p, and

W +bb̄+ ≥ 2p. In order to get the total W +bb̄ contribution, we must add up these

three subsamples. However, we must avoid double-counting, since it is possible that

additional jets can be created during the parton shower, so overlaps are removed

using a jet-parton matching algorithm. Similarly, because heavy flavor can be
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Table 4.2: Expected backgrounds for the 4.3 fb−1 W+4 tight jet sample used.

Background 1 tag ≥ 2 tags

non-W QCD 34.6 ± 29.8 2.2 ± 2.8

W+light mistag 29.4 ± 10.7 0.6 ± 0.3

diboson (WW , WZ, ZZ) 7.5 ± 0.8 0.7 ± 0.1

Z → `` + jets 5.4 ± 0.8 0.5 ± 0.1

Sum of above 3 42.2 ± 10.7 1.7 ± 0.3

W + bb̄ 39.0 ± 16.3 7.5 ± 2.7

W + cc̄ 24.0 ± 9.0 1.1 ± 0.4

W + c 12.1 ± 4.5 0.6 ± 0.2

Single top s-channel 2.7 ± 0.3 0.9 ± 0.1

Single top t-channel 3.5 ± 0.4 0.9 ± 0.1

Sum of above 5 81.4 ± 27.3 11.0 ± 3.2

Total background 158.2 ± 49.6 15.0 ± 5.7

Predicted top signal (σ = 7.4 pb) 440.5 ± 75.6 163.9 ± 25.7

Events observed 590 148
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produced in the parton shower of W + light events, we also must remove heavy

flavor using a jet-based heavy flavor algorithm [34]. After the overlap removal, the

subsamples are then added together, with each subsample weighted by the cross-

section for that subprocess times the acceptance. For the bins with lower parton

multiplicity (e.g., W + bb̄ + 0p or W + 2p), the acceptance for our cuts is very

small, so for the sake of simplicity (and to avoid the statistical problems associated

with using a sample with only a few events in it), we typically discard these lower-

multiplicity bins and use only the two highest parton multiplicity subsamples (e.g.,

W + bb̄ + 2p and W + bb̄ + 1p for the W + bb̄ channel).

The single-top samples are simulated with a top mass of 175 GeV/c2 using the

MadGraph/MadEvent [38] package along with pythia for the parton shower and

hadronization. For the sake of simplicity, since the contribution from the diboson

and Z + jets backgrounds is small, we do not use separate MC samples for these,

but rather increase the W + light total to include these events. All Monte Carlo

samples are then simulated using the CDF II detector response simulation package

based on the GEANT3 framework [39].

As Monte Carlo is not able to adequately model the non-W QCD background,

we use instead a data sideband for our non-W events. Specifically, we select events

from the electron and muon data using the same selection requirements as for

the tt̄ sample, except that we require the lepton to fail the isolation requirement

discussed in Section 3.4.1 (i.e. Isolation > 0.1).

To validate that our Monte Carlo samples correctly model the parameters of

interest in the data, we compare a variety of quantities between the two; this

comparison is shown in Appendix A.

Tables 4.3 and 4.4 summarize the main Monte Carlo (and data-based QCD)

samples used in this analysis. Table 4.5 shows how the W+light, W + bb̄, W + cc̄,

and W + c samples are subdivided into the individual parton multiplicity subsam-

ples. Note that this computation is actually performed for single-tag and multiple-
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tag results separately; we also show the results before and after the lowest parton

multiplicity bins are discarded to show that this simplification has a very small

effect on our result.

Note that the Monte Carlo samples in Tables 4.3 and 4.4 are generated with

a simulated luminosity profile matching CDF run periods 0 through 8. We also

use another sample, ttop25, generated with a luminosity profile covering CDF run

periods 0 through 19 at a top mass of 172.5 GeV/c2, to improve the match of our

luminosity profile to data.

4.6 Bad Signal

In addition to the background discussed above, there is one further class of unde-

sirable events that needs mentioning. These events are what we call “bad signal”

events — events where the underlying physical process is indeed a tt̄ event, but

where the final objects that we observe in our detector do not all come directly

from the tt̄ decay. (The opposite of a bad signal event, a tt̄ event where the objects

we see in our detector do all come from the tt̄ decay, is, naturally, called a “good

signal” event.) There are several possibilities for how a bad signal event can arise,

including:

• Extra jets can be produced from gluons radiated in the event, either from an

initial state particle (“initial state radiation” or “ISR”) or from a final state

particle (“final state radiation” or “FSR”), while a jet from the tt̄ decay is

lost or fails to pass the ET or η cut.

• In a tt̄ dilepton event, one of the leptons can be lost or misidentified; con-

versely, in a tt̄ all-hadronic event, one of the jets can be misidentified as a

lepton and another jet lost.

• A W → τ decay can occur, producing a signature which looks like a lepton

56



Table 4.3: Monte Carlo samples used for modeling the tt̄ signal at a variety of mt

values. The numbers listed are the full numbers of events passing the selection

cuts; note that our integration does not necessarily use all available events.

Sample name Description Events (pretag) Tagged events

ttkt60 pythia mt = 160.0 GeV/c2 18720 11768

ttkt62 pythia mt = 162.0 GeV/c2 18899 12009

ttkt64 pythia mt = 164.0 GeV/c2 19208 12291

ttkt66 pythia mt = 166.0 GeV/c2 39218 24704

ttkt68 pythia mt = 168.0 GeV/c2 39468 24982

ttkt70 pythia mt = 170.0 GeV/c2 40716 25882

ttkt72 pythia mt = 172.0 GeV/c2 40884 26112

ttkt74 pythia mt = 174.0 GeV/c2 41384 26343

ttkt75 pythia mt = 175.0 GeV/c2 166385 105805

ttkt76 pythia mt = 176.0 GeV/c2 41213 26210

ttkt78 pythia mt = 178.0 GeV/c2 42542 27138

ttkt80 pythia mt = 180.0 GeV/c2 42996 27316

ttkt82 pythia mt = 182.0 GeV/c2 43651 27844

ttkt84 pythia mt = 184.0 GeV/c2 43677 27907
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Table 4.4: Samples used for the background modeling.

Sample name Description Events (pretag) Tagged events

btop1w alpgen W → e + bb̄ + 1p 768 428

btop2w alpgen W → e + bb̄ + 2p 19452 8793

btop6w alpgen W → µ + bb̄ + 1p 686 374

btop7w alpgen W → µ + bb̄ + 2p 17017 7584

ctop1w alpgen W → e + cc̄ + 1p 739 98

ctop2w alpgen W → e + cc̄ + 2p 19849 2674

ctop6w alpgen W → µ + cc̄ + 1p 650 108

ctop7w alpgen W → µ + cc̄ + 2p 18139 2461

stopw2 alpgen W → e + c + 2p 5035 571

stopw3 alpgen W → e + c + 3p 95795 11274

stopw7 alpgen W → µ + c + 2p 4467 461

stopw8 alpgen W → µ + c + 3p 83991 9969

ptop3w alpgen W → e + 3p 2169 85

ptop4w alpgen W → e + 4p 45196 1917

ptop8w alpgen W → µ + 3p 1989 68

ptop9w alpgen W → µ + 4p 39868 1672

stop00 MadEvent s-channel single top 5914 3679

stopm0 MadEvent t-channel single top 3169 1853

bhel ni Non-isolated electron data 701 143

bhmu ni Non-isolated muon data 504 175
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Table 4.5: A table illustrating the process by which the contributions for the W +

jets background samples are broken down into the individual subsamples by parton

multiplicity. Note that the W + light number includes the diboson and Z + jets

contributions. The “before discard” column indicates the initial division, while the

“after discard” column shows the division after the lowest parton multiplicity bins

are discarded.

Process σ (pb) Acceptance (%) Before discard After discard

W + light (43.9 events)

W → e/µ + 0p 1800 0 0 —

W → e/µ + 1p 225 0 0 —

W → e/µ + 2p 35.3 0.00015 1.0 —

W → e/µ + 3p 5.59 0.0076 7.9 8.1

W → e/µ+ ≥ 4p 1.03 0.18 35.0 35.8

W + bb̄ (46.6 events)

W → e/µ + bb̄ + 0p 2.98 0.0015 1.2 —

W → e/µ + bb̄ + 1p 0.888 0.026 5.9 6.0

W → e/µ + bb̄+ ≥ 2p 0.287 0.54 39.5 40.5

W + cc̄ (25.0 events)

W → e/µ + cc̄ + 0p 5.00 0.00023 0.3 —

W → e/µ + cc̄ + 1p 1.79 0.0052 2.5 2.5

W → e/µ + cc̄+ ≥ 2p 0.628 0.13 22.2 22.5

W + c (12.7 events)

W → e/µ + c + 0p 17.1 0 0 —

W → e/µ + c + 1p 3.39 0.00086 0.6 —

W → e/µ + c + 2p 0.507 0.026 2.8 2.9

W → e/µ + c+ ≥ 3p 0.083 0.53 9.3 9.7
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+ jets event but which is missing the additional neutrino produced in the

subsequent decay of the τ .

• A jet from a single parton can split into two jets in the detector, or jets from

two different partons can merge into a single jet.

Figure 4.3 shows one possible way in which such a “bad signal” event can arise.

Bad signal events are particularly problematic for our analysis — they do contain

some useful information about the top mass (although some information is, of

course, lost), but treating them as normal tt̄ events will naturally not produce

meaningful results. However, these events may still have a peak in the top mass

likelihood and reduce the accuracy and precision of our measurement.

t

W+

t̄

W−

q̄

q

g → jet

ν̄ →6ET

`−

b̄ → jet

b → jet

q̄′ → jet

q (lost)

Figure 4.3: Feynman diagram for one possible way in which a “bad signal” event

can be created, in this case from initial state radiation (ISR).

Our Monte Carlo tt̄ simulated signal events naturally include both good signal

and bad signal; to identify good signal events in Monte Carlo, we apply two cuts.

First, we examine the tree-level process in the Monte Carlo; a good signal event is

required to be lepton + jets at tree level (i.e., one W must decay into an electron

or muon and the other into a qq̄′ pair). Second, we match the jets with the partons

using a χ2 matching; a good signal event must have a good match. Specifically,
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we consider all 24 permutations of assignments of jets to partons, and for each

permutation we compute a χ2 defined by:

χ2 =
4∑

i=1

(
ηi

j − ηi
p

ση

)2

+

(
φi

j − φi
p

σφ

)2

, (4.7)

where ηi
j and φi

j are the η and φ values for the four jets, and ηi
p and φi

p are the

η and φ values for the four partons. ση and σφ are the resolution in the η and φ

measurements, which we take to be both equal to 0.05 in this calculation. This χ2

is calculated for each permutation, and we require for a good match that the best

χ2 is less than 200 and the difference between the best χ2 and the second-best χ2

is at least 150.

Using these criteria, we observe that approximately 35% of events in our tt̄

signal Monte Carlo are bad signal. This is clearly a substantial fraction, and so we

need to ensure that our method is able to deal with bad signal events in addition

to background events.
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Chapter 5

Signal Likelihood Calculation
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5.1 Introduction to the Matrix Element Method

The idea of a matrix element calculation to measure the top mass has existed

since the ’80s [40], but is only within the past decade or so that the technique

has become computationally feasible. As a consequence, it has become extremely

popular in recent years, with many analyses in both CDF and D0 using some form

of matrix element technique [6]. However, our analysis includes several features

not seen in other matrix element analyses which improve our overall result.

The basic concept behind the matrix element method is quite straightforward.

Suppose we had perfect knowledge of all of the particles involved in a given tt̄ event,

except for the quantity of interest, the top pole mass mt. In this case, it would be

straightforward to evaluate the matrix element for tt̄ production and decay for a

variety of possible mt values and thus build a likelihood curve of observing that

event in the detector as a function of mt. The likelihood curves for a set of events

can then be multiplied together to obtain an overall likelihood for mt, and the

peak of this total likelihood curve taken as the measured value of mt.

In practice, of course, a large number of these variables are poorly measured or

not measured at all. The way we deal with this problem is simply to integrate over

all of the unknown variables, using appropriate priors to reflect our knowledge of

the expected values of the variables, as well as “transfer functions” which connect

these variables with the known quantities measured in our detector. In its simplest

form, we can write this integral as:

L(~y|mt) =

∫
|M(mt, ~x)|2TF(~y|~x)P (~x)d~x, (5.1)

where ~x represents the (unmeasured) true parton-level momenta, ~y represents

the measured quantities in our detector, M is the matrix element for the tt̄ lepton

+ jets process, P represents the prior distributions of the quantities in ~x, and the

transfer functions TF give the probability of observing an object with momentum

~y in our detector given a parton with momentum ~x.

63



Of course, the complexity of a tt̄ event means that the phase space ~x over which

this integral must be evaluated is quite large, and hence the calculations required

to obtain the likelihood can be very time-consuming. Other analyses, including

the previous version of this analysis [7], made a large number of assumptions about

the kinematics of the event to reduce the dimensionality of the integral and hence

the computation time required. Of course, these assumptions are not completely

perfect, which causes an inevitable loss of resolution in the result. In this analysis,

we use a new, quasi–Monte Carlo integration technique, described in Section 5.11,

which significantly reduces the time required to integrate an event, allowing us

to reduce the number of assumptions made and correspondingly improving the

precision and accuracy of our result.

5.2 The JES Parameter

While we have presented the likelihood above as a function of one parameter, there

is no reason that the same technique cannot be used to obtain a joint likelihood of

two or more parameters. We take advantage of this fact by introducing a second

parameter into our likelihood, ∆JES, thus obtaining a two-dimensional likelihood.

As we saw in Section 3.4.2, the systematic uncertainty on the jet energy scale (JES)

can be quite substantial, and, if we were to convert this into a systematic uncer-

tainty on our top mass measurement by the normal way (shifting the jets by their

uncertainty and measuring the resulting difference in the top mass), the resulting

systematic uncertainty would be by far the single largest source of uncertainty in

our result. However, each tt̄ event contains not only information about mt, but

also information about JES; specifically, because the two light quarks produced in

the hadronic W decay must add up to a W boson, we can use the known W mass

to obtain information about the JES in a given event. Thus, by introducing this

additional parameter, we can effectively convert the JES systematic uncertainty

into a smaller statistical uncertainty.
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The parameter that we use in our 2-D likelihood is ∆JES, which parameterizes

the shift in units of the jet systematic uncertainty. For instance, ∆JES = 1 means

that all jets are shifted upwards by +1σ, which may be different for different jets

in an event. (In past versions of the analysis, we used simply a flat multiplicative

factor for our JES parameter, but we have found that using ∆JES gives superior

performance.) More formally, if a jet with a given pT and η has a JES systematic

uncertainty of σJES(pT , η), then for a given ∆JES value, the jet pT is multiplied by

JES = 1 + ∆JES σJES(pT , η).

Because the ∆JES is what is known in the statistical literature as a “nuisance

parameter”, i.e., one that we are not primarily interested in measuring, we need to

determine some way to eliminate it in order to obtain a final mt measurement. This

issue is discussed further in Section 7.1. (Note, however, that we do make a final

measurement of ∆JES as well as mt; this helps as a cross-check on the measured

∆JES to make sure that its value is reasonable.)

5.3 Full Signal Likelihood

The full expression for the signal likelihood for a single event is slightly more

complicated than the formula shown in Equation 5.1. In its full form, the signal

likelihood used in our integration is given by

L(~y | mt, ∆JES) =
1

N(mt)

1

A(mt, ∆JES)

24∑
i=1

wiLi(~y | mt, ∆JES) (5.2)

with

Li(~y | mt, ∆JES) =

∫
f(z1)f(z2)

FF
TF(~y | ~x, ∆JES) |M(mt, ~x)|2 dΦ(~x) (5.3)

where the variables are defined as follows:

• As mentioned above, ~y represents the quantities measured in our detector

(lepton and jet momenta), and ~x represents the parton-level momenta.
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• N(mt) is a global normalization factor to account for the varying cross-section

and phase space as a function of mt.

• A(mt, ∆JES) is an acceptance factor to account for the fact that the detector

acceptance for tt̄ events varies with mt and ∆JES.

•
∑

i represents the sum over the 24 possible permutations of assigning partons

to jets.

• wi is the weight assigned to each permutation, determined by the presence

of b-tags in the event.

• Li is the likelihood for a single permutation, calculated as shown in Equation

5.3.

• f(z) are the parton distribution functions (PDFs) describing the momenta

carried by the incoming partons.

• The flux factor FF is the normalization factor for the PDFs.

• The transfer functions TF(~y|~x, ∆JES) represent the probability of seeing a

jet with momentum ~y given the parton-level momentum ~x and a JES shift

∆JES. (For the sake of conciseness, we only write the TF once, although

actually what is meant in Equation 5.3 is the product of the four transfer

functions for each jet.) The transfer functions also include a normalization

factor discussed in Section 5.6.3.

• |M(mt, ~x)| is the matrix element for tt̄ production and decay in the lepton

+ jets channel.

• Φ(~x) is the phase space being integrated over, including the appropriate

Jacobian for the change of variables into the variables used in our integration

and the priors.

These components are discussed in more detail in the following sections.
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5.4 Matrix Element

The matrix element is, naturally, the heart of the matrix element method; it gives

the amplitude for a tt̄ production and decay with parton momenta ~x to occur. We

use the matrix element expression developed by Kleiss and Sterling [41], which is

a leading-order expression including both qq̄ and gg production and includes full

spin correlations.

5.5 Parton Distribution Functions

The PDFs f(z) give the probability that the two incoming partons have a given

momentum. We use the CTEQ5L PDFs [42], with appropriate weights for q, q̄,

and g contributions. The flux factor FF essentially acts as a normalization factor

for the PDFs; it is given by

FF =
√

(z1 · z2)2 −m2
z1

m2
z2

with FF = |z1||z2| when mz1 = mz2 = 0, (5.4)

where z denotes the z-component of the momentum for the two incoming partons.

5.6 Transfer Functions

The transfer functions are one of the most important components of any matrix

element–based analysis, as they connect the parton-level quantities used in the

matrix element with the reconstructed quantities observed in our detector. In

principle, transfer functions can be used for all of the objects observed in our

detector — jets, leptons, and 6ET . However, we only apply our transfer functions

to the jets. We assume that the lepton momentum is well-measured in our detector

(essentially, that the transfer function for lepton momentum is a delta function),

and we do not use the value of the measured 6ET in our likelihood calculation at
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all, since it does not contain sufficient information to be useful in our top mass

calculation (this is essentially equivalent to setting the TF for 6ET to be identically

1).

The transfer functions are built by taking Monte Carlo events, matching the

jets to the partons using the χ2 algorithm described in Section 4.6, and then

building distributions of the quantities of interest as described below. (Note that

the jets are corrected to level 5, as described in Section 3.4.2.) These then give the

probability TF(~y|~x) desired. The transfer functions are built separately for b and

light jets, as well as in four different |η| bins reflecting the different regions of the

calorimeter: |η| < 0.2, 0.2 ≤ |η| < 0.85, 0.85 ≤ |η| < 1.4, and |η| ≥ 1.4.

For the sake of simplicity, we factorize our transfer functions into separate parts

for the magnitude of the momentum and the angles. That is, for a given jet with

observed momentum ~y and a parton with momentum ~x, the value of the transfer

function is given by

TF(~y|~x) = TFmom(pj|pp) · TFang(ηj, φj|ηp, φp), (5.5)

where the j subscripts indicate the jet quantities and the p subscripts the parton

quantities.

5.6.1 A Note on Proto-Jets

Before proceeding into the discussion of transfer functions, it is important to first

understand how generators such as herwig and pythia carry out their hadroniza-

tion process. First, a “tree-level” process is generated, in which the quarks are

on their mass shell (negligibly small mass for light quarks, and 4.95 GeV/c2 for b

quarks). The expression for our matrix element also is designed for this “tree-level”

calculation. Then, these quarks are adjusted in such a way that they acquire mass

(while conserving 4-momentum) to take into account the parton shower effects.

We call these adjusted partons, which later hadronize, “proto-jets”, as they are
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the actual partons that produce the final state jets.

It is, of course, possible to build our transfer functions between the tree-level

partons and the observed jets, ignoring the proto-jet level entirely. However, we

find in our studies that the properties of the final state jets depend significantly

on the proto-jet properties; specifically, larger proto-jet masses tend to produce

wider distributions in the resulting jet momenta. Consequently, taking this fact

into account will result in a more accurate modeling in the transfer function.

As a result, we build our transfer functions between the proto-jet momenta and

the observed jets as a function of the proto-jet mass. (The proto-jet mass then

becomes another integration variable, as discussed in Section 5.10.) To recover the

tree-level partons from the proto-jets, we reverse the procedure that herwig uses

to create proto-jets from partons, so we can thus recover the tree-level kinematics

from the proto-jets in our integration to evaluate the matrix element.

5.6.2 Momentum Transfer Functions

The momentum transfer functions are constructed as a function of the variable

u = pjet
T /pparton

T and are dependent on the variables pparton
T and the mass of the

proto-jet m described above. A three-dimensional distribution in u, pparton
T , and m

is thus constructed and smoothed using local orthogonal polynomial expansion [43],

which can be viewed as an extension of the standard kernel density estimation

(KDE) technique [44] to polynomials of higher degree. The transfer function is

then saved on a grid constructed to contain a reasonable number of points in

each bin. For speed purposes, the transfer function values are not parameterized,

but rather saved as a lookup table and then interpolated as necessary during the

integration. Figure 5.1 shows a sample momentum transfer function for a light

quark.

While the transfer functions are calculated for ∆JES = 0, they can naturally

be used for other ∆JES values as follows. The magnitude of the momentum ob-
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Figure 5.1: Sample momentum transfer function for a given fixed proto-jet mass

as a function of the pT ratio and the parton pT . The sharp edge at low parton pT

and ratio values is due to the 20 GeV cut for jets.
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served in the detector y can be related to the momentum used in calculating the

transfer functions y0 by y0 = JES ·y, where JES = 1 + ∆JES σJES(pT , η). Thus, the

probability distribution of y is given by

p(y) = p(y0)
dy0

dy
= p(y · JES)(JES +y

d JES

dy
). (5.6)

The latter term becomes important when the JES depends on pT , as it does in

this analysis (note that if JES were simply a flat multiplicative factor, this term

would be zero).

5.6.3 Transfer Function Normalization

In order for our probability calculation to be sensibly normalized, the transfer

functions must be themselves normalized.1 That is,

∫
Y

TF(~y|~x)d~y = 1 for all ~x, (5.7)

where Y indicates the space of all possible ~y values. Unfortunately, this is a very

difficult condition to satisfy, since applying our cuts to the Monte Carlo samples

mean that the whole region of Y is not covered. (Even if we took our Monte

Carlo sample without any cuts, jets simply cannot be reconstructed at very low

momenta, so our sample would still not cover the full space Y .) There are two

possible approaches to addressing this problem. One is to extrapolate the transfer

functions into the region below our cuts. However, this results in the transfer

functions being very sensitive to the way the extrapolation is performed — while

the transfer functions are never actually used for momenta below the cuts, by

definition, the more of the transfer function that lies in the extrapolated region,

the less that will actually lie in the observed region.

1Of course, like all other components of the integration, the transfer functions can be mul-

tiplied by an overall constant factor without any effect on the likelihood; what matters is the

relative normalization for different values of parton pT and mass.
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The approach used in this analysis, thus, is to build the transfer functions

only in the subspace Y ′ which represents values of ~y passing all cuts. In this

case, to ensure correct normalization of the transfer functions, we must impose the

condition

∫
Y ′

TF(~y|~x)d~y = ε(~x), (5.8)

where ε(~x) represents the probability for a parton with momentum ~x to produce a

jet that passes all cuts. We thus build this probability ε(~x) from Monte Carlo as a

function of the proto-jet pT and mass and smooth it using local quadratic logistic

regression, an extension of local linear logistic regression as described in [45].

Figure 5.2 shows this normalization for a light quark over a range of proto-jet

pT and mass values.

5.6.4 Angular Transfer Functions

The angular transfer functions are built as a function of ∆η = ηjet − ηparton and

∆φ = φjet − φparton. The distribution is built as a function of ∆η, ∆φ, and m and

then smoothed into a probability distribution using KDE.

Figure 5.3 shows a sample angular transfer function for a given η bin and m

value.

5.7 Normalization

The normalization factor (N(mt) in Equation 5.2) compensates for the fact that

the tt̄ cross-section is not constant as a function of mt; along with the acceptance

term, it is required to ensure that the overall likelihood is properly normalized.

We calculate this normalization factor using a Monte Carlo integration which inte-

grates the matrix element, PDFs, and flux factor (essentially, all the components of

Equation 5.3 except for the transfer functions) over the phase space defined by the
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Figure 5.2: Transfer function normalization as determined by the efficiency to

reconstruct a jet passing the ET cut of 20 GeV as a function of the proto-jet pT

and mass.
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two initial state and six final state particles. As the normalization factor can be

multiplied by an arbitrary constant without changing its effect on the likelihood,

we do not keep track of all constant factors in this integration, but we can compare

it to the tt̄ cross section from herwig by scaling it appropriately. This comparison

is shown in Figure 5.4; we note that there is good agreement between our result

and the herwig value. Since our calculation does not include everything included

in herwig (e.g. ISR/FSR), we do not expect the agreement to be perfect.

150 160 170 180 190 200

2

4

6

8

10

Our Calculation HERWIG

mt (GeV/2)Cross
setion
(pb)

Figure 5.4: tt̄ cross-section produced by our calculation (blue line) with appropriate

scaling to compare with the tt̄ cross-section in herwig (red dots).

5.8 Acceptance

The acceptance factor A(mt, ∆JES) is the other term (along with the normalization)

required to correctly normalize the overall likelihood. The acceptance simply gives

the probability that an event with a given mt and ∆JES value passes the selection

cuts and is observed in our detector.
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Perhaps the most obvious way to calculate this term is to simply take the sim-

ulated Monte Carlo samples at a wide variety of top masses mt and calculate the

acceptance for each. However, this approach is less than ideal for our analysis

for two reasons. First, there is the simple matter of limited statistics available in

the simulated samples, which can result in statistical fluctuations in the calculated

acceptance. The second, more serious, issue is that the simulated samples include

a large number of processes (basically, the cases that lead to “bad signal” events

discussed in Section 4.6) which are not included in our model, and so the mis-

match between the simulation and our model means that applying an acceptance

term derived from the simulation may not lead to a correct normalization for our

likelihood.

Instead, we generate our own set of Monte Carlo events using herwig in which

the full detector simulation is not performed — only the parton-level description

of the event is created. Because the full detector simulation is quite lengthy, this

allows us to create much larger samples of events, and we can ensure that the events

generated do adhere to our model. We then take the partons created and smear

them by our transfer functions to obtain objects which should behave like final-

state jets, and apply a set of cuts to these smeared partons designed to recreate

the effect of the normal cuts:

• The four smeared partons must have a ET > 21 GeV and |η| < 2.2

• The lepton must have a pT > 20 GeV/c and |η| < 1.

• The smeared partons must be separated from each other by a minimum ∆R

of 0.5, as if two partons were closer than that distance, they would merge

into a single final-state jet.

2The cut is 21 GeV instead of the 20 GeV used in our actual analysis for historical reasons,

as this calculation dates from an older version of our analysis which had slightly different cuts.

The difference is negligible, however.
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• The lepton must be separated from each of the partons by a minimum ∆R

of 0.5, to account for the lepton isolation cut.

• The difference between the visible transverse momentum and the tt̄ trans-

verse momentum must be at least 20 GeV, to account for the 6ET requirement.

The visible transverse momentum is calculated by summing the ~pT of the four

smeared partons and the lepton.

We then calculate the acceptance by simply dividing the number of events

which pass the above cuts as a function of mt and ∆JES by the total number of

events in the sample. Figure 5.5 shows the resulting 2-D acceptance.
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Figure 5.5: Acceptance term used in our integration as a function of mt and ∆JES.
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5.9 Permutation Weights

The likelihood is calculated separately for each of the 24 possible permutations of

assignments of jets to partons; these individual likelihoods are then summed to

get a total likelihood for the event. Each permutation is weighted by a weight wi

determined by how the permutation corresponds to the b-tagging information in

the event as follows:3

Each jet in an event has a certain probability of being tagged, which we denote

as Pb for a b-jet, Pc for a c-jet, and Pl for a light (u, d, or s) jet. These probabilities

are parameterized as functions of the jet ET and η by fitting the efficiencies for

tagging b-jets and mistags determined by the CDF b-tagging group with fifth-degree

polynomials in ET and η. These fits are shown in Figure 5.6. The probability that

a charm jet is tagged is taken to be 22% of the corresponding b-tag probability

(i.e., Pc(ET , η) = 0.22Pb(ET , η)).

For a given permutation, we compute the tagging probability for each parton.

Assuming that the two decays W → ud̄ and W → cs̄ each occur 50% of the time,

this tagging probability Ptag is thus Pb for a b-parton, 0.5Pc + 0.5Pl for a u-type

parton, and Pl for a d-type parton. Then, we add a weight for each jet equal to

Ptag if the jet assigned to that parton in this permutation is tagged, or 1− Ptag if

the jet is not tagged. The overall weight for the permutation is then the product

of the four individual weights for each jet-parton pair.

3In earlier versions of this analysis, we only considered permutations where the b partons

were assigned to b-tagged jets; this reduced the number of permutations we needed to consider.

However, this produced very poor results in tt̄ events which contained a mistagged jet, so we

adopted this approach.
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Figure 5.6: Fits used for parameterizing the b-tag and mistag probability as a func-

tion of ET and η. The total b-tag or mistag probability is obtained by multiplying

the efficiency as a function of ET by the relative efficiency as a function of η.
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5.10 Phase Space and Variables

5.10.1 Integration Variables

A total of 32 variables is needed to fully describe the kinematics of a tt̄ production

and decay event, four for each of the two incoming partons and six final state

particles (two light quarks, two b quarks, the lepton, and the neutrino). This

number is reduced by the following constraints and assumptions:

• Energy-momentum conservation allows us to eliminate four variables.

• We assume that the charged lepton and neutrino mass are perfectly known

(i.e., that their uncertainties are negligible, as they are much smaller than

other sources of uncertainty in our measurement).

• We assume that the momentum for the charged lepton is perfectly measured.

• We assume that the masses of the initial partons are perfectly known.

• Finally, we neglect the effects of the individual transverse momenta of the

initial partons, and model only the transverse momentum of the total tt̄

system. This eliminates two more degrees of freedom (since ~pT is a two-

dimensional vector).

After all these eliminations, we are left with a 19-dimensional phase space. In

our previous analysis [7], we were forced to make more assumptions to further

reduce the dimensionality of the integral to seven dimensions. The gain in inte-

gration speed provided by Quasi–Monte Carlo integration [46], however, allows us

to integrate over all 19 remaining dimensions.

The choice of which variables to use is determined by speed considerations.

Because we use importance sampling techniques to improve the numerical con-

vergence, we wish to choose integration variables which allow us to apply this
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technique in a straightforward manner. Consequently, we select the following 19

variables:

• M2
t,lep and M2

t,had, the squared mass of the leptonic and hadronic top quarks4

• M2
W,lep and M2

W,had, the squared mass of the leptonic and hadronic W s

• β ≡ log pq

pq̄′
, the logarithm of the ratio of the magnitudes of the momenta of

the two partons from the hadronic W

• ~pT (tt̄), the transverse momentum of the tt̄ system

• m1...4, the masses of the four proto-jets as defined in Section 5.6.1

• η1...4 and φ1...4, the angles of the four proto-jets

Quasi–Monte Carlo integration is used for 18 of these variables. The leptonic

W mass M2
W,lep requires special treatment to avoid phase space singularities, and so

it is integrated over a fixed grid; this procedure is discussed more fully in Appendix

B.

In order to create a sensible final likelihood, we must include the appropriate

prior distributions for our integration variables. These priors are not included

explicitly; rather, we use the prior distributions as our distributions for importance

sampling, which thus implicitly includes the effects of the priors in our integration.

The priors used are as follows:

• For the top and W masses, a Breit-Wigner distribution centered at the top

pole mass mt for the top quark and at the known W mass for the W boson

is used.

4It is important not to confuse these with mt, the top pole mass. The value of mt is fixed at

a given integration point and scanned over to calculate a total L(mt,∆JES) curve; Mt, on the

other hand, represents the top mass in a particular event and is integrated over.
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• For the β parameter (≡ log pq/pq̄′), a flat distribution from -1.7 to 1.7, cen-

tered around the value of the same ratio for the assigned jets, is used.

• For the ~pT (tt̄) distribution, we use a distribution built from Monte Carlo

samples at different masses.

• For the proto-jet masses, the distribution of proto-jet masses from Monte

Carlo is used.

• For the proto-jet angles, no explicit prior is used; rather, the angular transfer

function provides the distribution we sample in.

For a given integration point, values for the integration variables are selected,

and then the kinematic equations to reconstruct the rest of the event are solved.

Since we now allow for arbitrary jet masses, the general solution for the leptonic b

jet momentum requires solving a 8th-order polynomial, which we solve using the

Jenkins-Traub algorithm [47]. Because more than one solution may be possible,

we compute the integrand for up to four different solutions and sum the likelihood

over these different solutions.5

5.10.2 Phase Space and Variable Transformation

By Fermi’s Golden Rule, since we are obtaining an amplitude for a scattering

process, we need to include the appropriate factors for the phase space available to

the final products of the process; in our case (neglecting constants), this is simply:

4∏
i=1

d3~pidEi

(2π)3
· d3~p`

(2π)32E`

· d3~pν

(2π)32Eν

, (5.9)

5The limit of four is chosen simply to reduce the integration time; cases where there are more

than four real solutions are rare. If there are more than four solutions, then we take the four

in which the solved b momentum is closest to the momentum for the assigned jet; because the

transfer function would have a small value for values far away from the observed value, these

would only contribute a very small likelihood in any case.

82



where ~pi and Ei represent the three-momentum and energy of the four partons.

Note that the phase space factor for the partons is slightly different from the

more standard form used for the charged lepton and neutrino. This is because

the lepton and neutrino mass are taken as constant, while the parton masses are

allowed to vary in our integral.

Because of our previous assumption that the lepton momentum is well-

measured, the integration over ~p` is eliminated. We can also rewrite the three-

momenta in terms of their magnitude pi and angles Ωi:

4∏
i=1

p2
i dpidΩidEi

(2π)3
· d3~pν

(2π)32Eν

. (5.10)

At this point, we need to transform the variables p1 . . . p4, E1 . . . E4, pνx, pνy,

and pνz into the variables actually used in our integration. This requires computing

the Jacobian matrix; for the full form of this Jacobian, see [48].6

5.11 Quasi–Monte Carlo Integration

A popular way for performing integration in physics problems is Monte Carlo in-

tegration, in which points in the integration space are randomly selected.7 Monte

Carlo integrations typically exhibit O(1/
√

N) convergence, where N is the num-

ber of integration points. In our method, we use, for the first time in a top mass

measurement, a different method of integration, Quasi–Monte Carlo (QMC) in-

tegration [49]. QMC integration employs quasi-random sequences, which results

in an overall improved convergence, thus allowing us to integrate over a more

complicated phase space and still compute the integral in a reasonable amount of

time.

6This Jacobian only includes the first seven variables in Section 5.10.1; the angles are already

present in the phase space factor in Equation 5.10, but changing from dE to dm requires an

appropriate term.
7More precisely, of course, any random numbers generated by a computer are pseudo-random.
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In QMC, as in regular Monte Carlo integration, we approximate our integral

by evaluating it at a series of points; that is,

∫
f(~x)d~x ≈ 1

N

N∑
i=1

f(~xi). (5.11)

(For the sake of simplicity in the following discussion, we assume the inte-

gration space has been transformed into the s-dimensional unit cube Is.) What

distinguishes QMC from regular Monte Carlo integration is how the set of points

~xi is chosen. In regular Monte Carlo integration, these points are chosen randomly,

which naturally means that there will be some regions of phase space which have

more points than average and some regions with fewer points than average. In

QMC integration, we use a quasi-random sequence of points to determine ~xi, which

is a deterministic sequence defined by its uniform coverage [50].

A quasi-random sequence has a low discrepancy. There are many ways to define

discrepancy, but intuitively speaking, a low-discrepancy sequence is one in which

equal subvolumes of the integration space contain as close to equal numbers of

points as possible. One common measure of discrepancy is the star discrepancy:

D∗ = sup
B∈J∗

∣∣∣∣ 1

N
(number of points of ~xi in B)− volume of B

∣∣∣∣ (5.12)

where J∗ is the family of all subintervals of Is of the form
∏s

k=1[0, ui) for ui ∈ [0, 1)

(that is, the set of all subrectangles with one vertex at the origin).

Some popular low-discrepancy sequences are the Halton, Faure, and Sobol se-

quences [49, 50]; in this analysis, we use an 18-dimensional Sobol sequence as our

pseudo-random sequence. Figure 5.7 shows a sample Sobol sequence compared to

a random sequence.

Note that, in high dimensions, the Sobol sequence can exhibit patterns in 2-

dimensional cross-sections, so we also apply an additional “scrambling” which ran-

domizes the digits of the Sobol sequence to reduce these patterns while preserving

its low-discrepancy properties [51].
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Figure 5.7: A comparison of a 2-dimensional random sequence (top) and a Sobol

quasi-random sequence (bottom).
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Given the application of a low-discrepancy sequence, the Koksma-Hlawka in-

equality [50] gives the following bound on the error between the quasi–Monte Carlo

integration value and the actual value:

bs,N(log N)s/N for N ≥ 2, (5.13)

where bs,N is a bounded constant for N ≥ 2. For large dimensions s, then, QMC

integration can exhibit significantly better convergence than ordinary Monte Carlo

integration procedures. As this is an upper bound, the actual convergence of

QMC integration can be better than implied by the above equality [52, 53]. As

an illustration, we have performed a small study of QMC integration performance

applied to the calculation of the muon lifetime in first-order perturbation theory,

where we can compare it to the known theoretical answer. Figure 5.8 shows the

results of the study; it appears in this case that the integral converges roughly as

O(1/N).
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Figure 5.8: QMC integral convergence applied to the problem of the muon lifetime.

A Sobol sequence is used to perform the 5-dimensional integration, and the result

is compared with the exact theoretical answer.
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5.12 Distributed Integration Framework

The actual integration is carried out using a distributed method similar (albeit on

a smaller scale) to that used by analyses such as SETI@home or Folding@home.

The framework consists of three parts:

• The director oversees the entire integration. All masters and workers con-

nect to the director first; the director assigns workloads and workers to the

masters as necessary.

• The masters are responsible for workloads, typically 1000-event chunks. The

director assigns workers to masters; the master, in turn, assigns and transmits

events to the workers, and receives the completed integration results from

the workers in turn. When the master finishes a workload, it returns to the

director to obtain a new one.

• The workers run on the CDF Central Analysis Farms (CAFs) and are re-

sponsible for the actual integration. Workers first contact the director, which

assigns them to a master; the worker then receives an event from the master

and performs the integration. When the integration concludes, the worker

sends the results to the master and receives a new event.

The worker carries out the likelihood integration on a grid consisting of 32

points in 2 GeV/c2 intervals in mt from 143 to 207 GeV/c2, and 26 points in 0.4

σ intervals in ∆JES from -5.2 to 5.2 σ. The integration proceeds until it reaches

a predetermined target precision of 0.1 relative precision, or until it reaches a

time limit of 2 hours elapsed time. Typically about 30% of events time out before

reaching the integration precision, and the mean time required to integrate a single

event is ∼ 80 minutes/event.

The workers use a number of techniques to speed up the integration:

• Before beginning the integration, points on the leptonic side which will not

result in solvable kinematics are identified and excluded.
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• As the integration proceeds, if a permutation is identified as having a sig-

nificantly lower likelihood, the worker stops working on that permutation to

focus on the higher-likelihood permutations.

• Because the ∆JES value affects only the jet-level quantities, not the parton-

level quantities, the only part of the integrand affected by ∆JES is the transfer

functions. Thus, at a given point, we only need to compute the rest of the

integrand once, and then compute the transfer function value for each ∆JES

value, thus allowing us to process many ∆JES points in a relatively quick

time.

If a worker fails to return an integrated curve, usually due to worker node

crashes or a worker running out of CAF time without being able to report that

fact to the master, then the master will retry the event up to a maximum of three

tries. Typically, ∼ 0.5% of events will fail to be processed, but this is small enough

that we neglect it. (For data, we run on the more reliable CAFs, so we get 100%

of events returned in this case.)

Due to time considerations, we do not integrate every single Monte Carlo event

in our samples. Rather, for an input tt̄ sample, we typically integrate either 8k or

16k events, depending on time availability and the size of the original sample.

After the integration has concluded, we apply the acceptance and normalization

terms to the resulting curves. The curves are also smoothed by convoluting with

a Breit-Wigner and interpolated onto a finer grid with 320 points in mt at 0.2

GeV/c2 intervals and 150 points in ∆JES at 0.0667 σ intervals; studies have been

run to optimize these values.
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Chapter 6

Background Handling

89



6.1 Motivation

So far, we have been considering events under the assumption that they are really

tt̄ lepton + jets events. Of course, as discussed in Section 4.2, a certain fraction

of non-tt̄ events will pass our selection cuts, and, as discussed in Section 4.6, even

some tt̄ events are “bad signal” and hence will not produce meaningful results when

analyzed using the technique described in the preceding chapter. Consequently,

we need a method to deal with these events.

In principle, it is possible to construct a background likelihood in much the

same way as the signal likelihood; this is the approach taken by some other matrix

element analyses [54]. However, such an approach requires a large amount of time

to develop the background likelihood calculation. For the sake of simplicity, then,

we adopt a simpler approach, consisting of three parts.

First, we construct a discriminant which uses an artificial neural network to

identify the probability of an event being background given some kinematic and

topological variables in the event. Secondly, we use the discriminant to estimate

the portion of the total likelihood contributed by background events, and then

subtract off this part to recover the likelihood from signal events. Finally, we apply

an additional cut to our sample on the peak log-likelihood value of individual event

curves; this removes a significant fraction of bad signal and background events from

our sample while removing only a small fraction of good signal events, resulting in

a pronounced improvement in our resolution.

These three steps are described in the following sections, 6.2–6.4.

6.2 Neural Network Discriminant

The first step is to create a variable to distinguish between signal and background

events. To this end, we construct a neural network which uses various kinematic

and topological variables describing the event to create a probability that the
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event is background. We train the neural network with ten inputs, summarized

in Table 6.1: the pT for each of the four leading jets; the ET of the lepton; the

missing ET , 6ET ; HT , the scalar sum of the jet transverse energies, lepton transverse

energy, and missing ET ; and three variables describing the shape of the event:

the aplanarity, defined as 3/2 the smallest eigenvalue of the momentum tensor

Θab =
∑

i p
i
ap

i
b/

∑
i |~pi|2, where a and b are indices for the three axes x, y, and z;

DR = ∆Rmin
ij ·min(p

(i,j)
z )/p`

T , where ∆Rmin
ij is the smallest ∆R between any pair of

jets; and HTZ =
∑4

i=2 |pi
T |/(

∑4
i=1 |pi

z|+ |p`
z|+ |pν

z |), the ratio of the scalar sums of

the transverse momenta for the three non-leading jets to the longitudinal momenta

of all six final objects in the event. The network itself is built using the JETNET

neural network package, version 3.5 [55] with the RootJetnet interface to ROOT.

Table 6.1: The ten variables used in the neural network discriminant. The first

seven describe the kinematics of the event, while the last three are topological

variables describing the shape of the event.

Variable Definition

p1...4
T pT for each of the four leading jets

E`
T Charged lepton ET

6ET The missing ET

HT Scalar sum of pT for four jets, lepton pT , and 6ET

Aplanarity = 3/2 ·Q1 Q1: smallest eigenvalue of the momentum tensor

DR = ∆Rmin
ij ·min(p

(i,j)
z )/p`

T ∆Rmin
ij : smallest ∆R between any pair of jets

HTZ Ratio of transverse to longitudinal momenta

We train the neural network using tt̄ signal events with a mass of 170 GeV/c2

and W +bb̄+2p events for the background; we then cross-check the neural network
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with other signal masses and background types to make sure that the output

shape is not significantly dependent on the signal mass present or background

composition.

Figure 6.1 shows the neural network output for a variety of different sam-

ples. Now, given an event with a neural network value of q, we can compute the

background fraction for this event as fbg(q) = B(q)/(B(q)+S(q)), where the back-

ground and signal distributions are normalized to their overall expected fractions.

Figure 6.2 shows the final distributions, including their normalization, used for

calculating fbg.
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Figure 6.1: The distributions of our discriminant variable for signal and back-

ground Monte Carlo events. The solid lines indicate signal events at various masses,

while the dashed lines indicate various types of backgrounds.

6.3 Modified Likelihood

When we combine the likelihood curves from all events, our total likelihood will

naturally contain likelihoods from signal events and background events. However,
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Figure 6.2: Background templates for single-tag (left) and multiple-tag (right)

events, showing the calculation of fbg(q). Note that the signal is stacked on top of

the background.

only the signal events will contain meaningful information about mt. Thus, we

want to remove the contribution due to background events from the total likelihood

to recover the likelihood from signal events. (Note that there is not a separate

matrix element for background processes — the likelihood for all events, signal and

background, is calculated under the assumption that the event is a tt̄ signal event.)

Consequently, we compute from Monte Carlo simulation the average likelihood for

background events and subtract out the expected contribution due to background

events from the total likelihood:

log Lmod(mt, ∆JES) =
∑

i∈events

[log L(~yi|mt, ∆JES)]− nbg log Lbg(mt, ∆JES), (6.1)

where Lmod is the modified total likelihood for a given set of events, L(~yi|mt, ∆JES)

is the likelihood for an individual event, nbg the expected number of background

events, and Lbg(mt, ∆JES) is the average likelihood for a background event as com-

puted in Monte Carlo simulation. This calculation is performed separately for 1-tag

and >1-tag events, as the background fractions and Lbg(mt, ∆JES) are different for

the two subsamples.
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We can rewrite Eq. 6.1 in terms of the individual per-event background fraction

to obtain our final modified likelihood Lmod:

log Lmod(mt, ∆JES) =
∑

i∈events

[log L(~yi|mt, ∆JES)− fbg(qi) log Lbg(mt, ∆JES)], (6.2)

where fbg(qi) is the background fraction given the discriminant variable qi for a

given event, as derived in the previous section. Equations 6.1 and 6.2 are equivalent

if the number of background events in the data is equal to the expected background

contribution. However, the advantage of using Eq. 6.2 is that if there are more or

fewer background-like events in our data than expected, the average value of fbg(qi)

will be correspondingly higher or lower, thus compensating for the difference.1

This method has the advantage of simplicity; the disadvantage is that, for

any given sample of events, the average background likelihood in that sample

will naturally show some fluctuation around Lbg(mt, ∆JES), so our subtraction

procedure will not be completely accurate. This results in a slight increase in our

pull widths, as discussed in Section 7.6.

6.4 Likelihood Cut

As mentioned in Section 4.6, bad signal events make up approximately 35% of

our expected tt̄ signal. While the above method is designed to handle background

events, it does not deal with bad signal events, so we need a separate method to

handle them. We observe that, if we look at the values of the peaks of the log-

likelihood of the curves, these peaks tend to be lower for bad signal and background

1Originally, the motivation for introducing the per-event background discriminant fbg was

that it could be used to modify the likelihood of individual curves so that they would contribute

less to the total likelihood if fbg were greater. However, in our studies, we found that the

improvement by decreasing the contribution of real background events was outweighed by the

loss in resolution caused by decreasing the contribution of signal events incorrectly identified as

likely to be background, so this idea was not used in our final method.
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events than for good signal.2 Figure 6.3 shows the distribution of this peak value

in Monte Carlo events. From examining this figure, we choose a cut value of

10, which eliminates a substantial fraction of bad signal and background while

retaining nearly all of our good signal. (Our studies show that our results are not

particularly affected if the cut value is changed to other values near 10.) Table 6.2

shows the efficiency of this cut for good signal events, bad signal events, and

background events.

Likelihood peak values

−2 0 2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

Log−likelihood value at peak

Event fraction

Background Bad signal Good signal

Figure 6.3: Distributions of the peak of the event log-likelihood for good signal,

bad signal and background. The cut at 10 is illustrated by the dashed line. The

top mass sample used here is at 172 GeV/c2.

Overall, as we will see in Section 7.6, the likelihood cut results in a substan-

tial improvement in our resolution despite the decreased number of events in our

sample.

2We make no effort to apply an overall normalization to the likelihood curve, so the absolute

value of this peak is not in itself meaningful, but the relative differences between peaks from

different events is meaningful.
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Table 6.2: Efficiency of the log-likelihood cut used in our analysis at a value of 10,

given a top mass sample of 172 GeV/c2. The background value and uncertainty are

obtained by summing appropriately across the different background types. (Note

that the uncertainties displayed are simply the binomial uncertainty. There is also

a slight variation on the efficiency for good signal and bad signal with respect to

top mass of about 1%.)

Type of event Total 1-tag >1-tag

Good signal 96.8% ± 0.2% 96.5% ± 0.2% 97.5% ± 0.3%

Bad signal 79.7% ± 0.5% 80.1% ± 0.6% 78.5% ± 1.1%

Background 73.5% ± 0.4% 73.6% ± 0.4% 73.6% ± 1.3%
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Chapter 7

Method Testing and Calibration
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7.1 Top Mass Extraction

Given an ensemble of events, we calculate the total log-likelihood by summing the

log-likelihoods of each of the individual events, and then apply the likelihood mod-

ification procedure described in Section 6.3. Since we are interested in measuring

the top mass, we need to eliminate the nuisance parameter ∆JES. There are two

main ways to perform this elimination — the profile likelihood and the marginal-

ized likelihood. In the profile likelihood method, we select, for each point along

the mt axis, the point along the ∆JES axis for which the likelihood is maximized:

Lprof(mt) = max
j∈∆JES

L(mt, j). (7.1)

The alternative method, the marginalized likelihood, integrates the likelihood

along the ∆JES axis with some given prior. While, in our studies, the difference

between the profile and the marginalized likelihood results is small, we choose

the profile likelihood, as it does not make any prior assumptions about the ∆JES

variable.

After reducing the 2-D curve to a 1-D likelihood, we can then extract a mea-

sured mass and uncertainty from this curve. The measured mass mmeas is simply

determined by the position of the peak of the likelihood curve, while the un-

certainty is determined by the standard technique of descending one-half unit of

log-likelihood from this peak:

log L(mmeas + σ+) = log L(mmeas)− 0.5

log L(mmeas − σ−) = log L(mmeas)− 0.5

For the sake of simplicity, we then symmetrize the individual positive and

negative errors into a single symmetrized error σ = (σ+ + σ−)/2.

For a measurement in which the true top mass is known, we can also define

the pull as the ratio of the actual error of the measurement to the measured
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uncertainty:

pull =
mmeas −mtrue

σ
. (7.2)

While ∆JES is not the parameter of interest in our final measurement, it is still

valuable to measure it as a sanity check. We can perform the ∆JES measurement

in exactly the same way, eliminating mt using the profile method and extracting a

measured ∆JES and uncertainty using the same method.

7.2 Pseudo-Experiment Procedure

Before we can perform a measurement on the data, it is necessary for us to test

our technique on samples with known top masses so that we can verify that it

returns correct top mass values and uncertainties for those values, and if not, to

calibrate the method to appropriately correct these measured values. We do this

by running ensembles of “pseudo-experiments” (PEs) on Monte Carlo samples with

known values of mt and ∆JES.

A single PE is constructed by selecting a sample of Monte Carlo events. Events

are selected from the tt̄ signal sample being tested and the various background

samples described in Section 4.5, with the contribution of each sample to the

total being equal, on average, to its expected contribution from the background

calculation described in Section 4.4. The average total number of events in each PE

is set equal to the observed number of events in data. (Since the number of expected

signal and background events does not add up exactly to the observed number of

events in data, we use the estimated background numbers for the background,

and then take the difference between the number of observed events and the total

background contribution to be the signal contribution.) However, for each PE, the

contribution from each sample is Poisson-fluctuated around the expected average,

so the total number of events in any given PE may be more or less than the
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expected number.

For a given top mass and ∆JES, we perform an ensemble of 2000 PEs. For

a single PE, we extract a measured mass and uncertainty using the procedure

described above. We then define four quantities of interest from the PE ensemble

as follows:

• Measured mass: The measured mass for an ensemble of PEs is simply the

mean of the measured mass for the individual PEs, 〈mmeas〉.

• Bias: The bias is the difference between the measured mass and the true

mass of the sample, 〈mmeas〉 −mtrue.

• Range: The range is the standard deviation (or RMS) of the distribution of

measured masses of the PE ensemble,
√
〈m2

meas〉 − 〈mmeas〉2.

• Pull width: The pull width (often referred to simply as “pull”) is the standard

deviation (RMS) of the distribution of the individual PE pulls.

A perfect analysis would have a bias of 0 (indicating that it correctly measures

the input mass) and a pull width of 1 (indicating that it correctly estimates its own

uncertainties). However, imperfections in the analysis mean that these conditions

are not exactly satisfied. By measuring the bias and pull width on Monte Carlo

samples, however, we can use these measured quantities to calibrate our analysis

so that we can correctly measure the top mass and its uncertainty on data.

We also call the range the “expected uncertainty”, as it provides a measurement

of the expected uncertainty of an actual measurement, including any corrections

necessitated by a non-unit pull width. (Note that in the limiting case where σ is

constant, the range is by definition equal to σ times the pull width.) It is important

to note that if the measured top mass is corrected by a multiplicative factor, as we

will see in the next section, the range must also be corrected by this same factor.

It is of course also important to know the error on the bias, range, and pull for

an ensemble of PEs. Because the number of PEs performed times the number of
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events per PE is much greater than the number of events in our sample, a single

MC event thus appears many times in our ensemble of PEs. Consequently, esti-

mating the error on the bias using the standard formula σ/
√

NPE will incorrectly

underestimate the error (and similarly for the error on the range and pull width).

Instead, we use the bootstrap method to evaluate the errors on our measured mass,

expected error, and pull width. For a full description of the bootstrap method,

see [56]; to briefly summarize how it is used in our analysis, we construct N =

50 “pseudo-samples” from our original sample by randomly choosing events (with

replacement1) from the original sample. The pseudo-samples have a size equal to

the original sample. We then perform our normal PE procedure on each pseudo-

sample to obtain 50 different mass, expected error, and pull width measurements.

By examining the spread of these distributions, we can thus obtain the errors on

these measurements. We perform these bootstrap studies on one sample and as-

sume that the results are valid for all input samples of the same size; since some

of our samples contain 8k events and some 16k events, we perform the bootstrap

twice for each number of events. The results of these studies for 8k events are

shown in Figure 7.1. Based on these results, we assign an error of 0.28 to our bias

measurements, 0.031 to our pull width measurements, and 0.035 to our expected

uncertainty measurements for a sample size of 8k events and 0.16, 0.022, and 0.024

for the bias, pull, and expected uncertainty for a sample size of 16k events.

For the bias, at least, one can also obtain an estimate of the uncertainty by

slightly modifying the σ/
√

N formula so that the N used is the number of unique

PEs — that is, the total number of events available in the sample divided by the

number of events per PE (for this calculation, we use the number of signal events,

since they tend to be the limiting factor). The uncertainty on the bias obtained in

this method agrees well with the uncertainty obtained from the bootstrap method.

When we have a sample for which we have processed a different number of events

1That is, a given event from the original sample can appear more than once in a single

pseudo-sample.
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Figure 7.1: Results of our bootstrap studies for the mt = 172 GeV/c2 sample with

8k events. Top left: distribution of biases for the ensemble of pseudo-samples. Top

right: distribution of pull widths for the ensemble. Bottom left: distribution of

range (expected errors) for the ensemble.
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than 8k or 16k, we can use this simpler method to calculate the uncertainty on

the bias rather than redoing the whole bootstrap analysis. (Note that this method

does not produce reasonable results for the range or pull width, but typically we

are only interested in the bias anyway when making systematic measurements.)

Note that when we are performing PEs on samples with known top mass and

∆JES, we reduce the range of the likelihood curves to a ±12 GeV/c2 range around

the true top mass and a ±2σ range around the true ∆JES value. This improves

the speed of the PEs, and is more than large enough that all of the individual PE

results will still fall in this range.

7.3 Fully Realistic Pseudo-Experiment Results

The most important PEs run in testing and calibrating our method are what we call

“fully realistic” PEs; that is, PEs which use all the parts of our analysis machinery,

including the background subtraction and likelihood cut described in Chapter 6,

and where the composition of the events in the PE is the same as the composition

of events expected in the data. These PEs are run with a mean of 640.5 events

per PE, which is the total number of events expected to pass the likelihood cut.

(This number is obtained by taking the expected number of events from Table 4.2

before the cut for each type of background and multiplying for the efficiency of the

likelihood cut for that type of background.)

7.3.1 Results in mt with fixed ∆JES

In our first set of PEs, we vary the input top mass while holding the input ∆JES

fixed at 0. For these tests, we use a total of 14 input masses between 160 GeV/c2

and 184 GeV/c2. These results are shown in Figure 7.2.

As we can see, while the response of the measured top mass to the input

mass is reasonably linear, the bias and slope are not quite 0 and 1, respectively,
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Figure 7.2: Pseudo-experiment results using fully simulated signal and background

events after applying the likelihood cut of 10. Calibration has not been applied.

The expected number of events is 640.5 after the likelihood cut has been applied.

Here, 14 mass values between 160 and 184 GeV/c2 have been used. Top left:

reconstructed vs. input top mass; top right: bias vs. input top mass; center left:

expected uncertainty vs. input top mass; center right: pulls vs. input top mass;

bottom left: distribution of mass from individual pseudo-experiments for mt =

172 GeV/c2; bottom right: distribution of pulls for mt = 172 GeV/c2.
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indicating that we need to apply a calibration to the measured mt to obtain the

correct value. Similarly, the pull width is not quite 1, indicating that we need to

apply a calibration to the measured uncertainty to obtain the correct value. The

distributions of PE masses and pulls look reasonably Gaussian, indicating that the

PE ensembles are stastically well-behaved.

7.3.2 Results in ∆JES with fixed mt

Next, we proceed to measure the output ∆JES in samples with a fixed mt of 172

GeV/c2 and vary the input ∆JES value among five different possibilities: -1 σ, -0.5

σ, 0 σ, +0.5 σ, and +1 σ. These results are shown in Figure 7.3.
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Figure 7.3: Pseudo-experiment results in measuring the ∆JES value using the fully

realistic case. Left: reconstructed ∆JES vs. input ∆JES. Right: pull width for the

∆JES measurement vs. input ∆JES.

Again, we see that a calibration is needed to account for the bias, slope, and

pull width in the ∆JES measurement.

7.3.3 Results with varying mt and ∆JES

Finally, we need to see if the calibration constants themselves vary with input mt

and ∆JES, so we vary both of these parameters. Specifically, we examine three
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different top masses (166, 172, and 178 GeV/c2) with the five different ∆JES values

and look at the resulting measured mt and ∆JES. The results of these PEs are

shown in Figure 7.4.
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Figure 7.4: Study of JES linearity. Top left: Reconstructed vs. input top mass at

the five different ∆JES points; top right: reconstructed vs. input ∆JES at the three

different mass points; bottom left: reconstructed top mass vs. input ∆JES for the

three different top masses; bottom right: bias vs. input mass for the five different

∆JES values.

As we can see from the bottom two plots, the bias in mt does not appear to

be a constant, but rather varies with the input ∆JES as well. Thus, we cannot

simply calibrate mt and ∆JES independently using the results from the PEs shown

in Figures 7.2 and 7.3, but must also account for this cross-dependence.
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7.4 Calibration of the Method

In the most general case, the measured mass (which we write in terms of ∆m =

(mt − 172 GeV/c2), since our fits are centered around mt = 172 GeV/c2) and

measured ∆JES depend on both the true mass and ∆JES. That is, assuming a

linear dependence in our calibration,

∆mmeas = a×∆mtrue + b× (∆JES)true + c (7.3)

(∆JES)meas = d× (∆JES)true + e×∆mtrue + f (7.4)

Inverting this, we obtain

∆mtrue = d/(da− be)×∆mmeas − b/(da− be)× (∆JES)meas

+ (bf − dc)/(da− be) (7.5)

(∆JES)true = a/(da− be)× (∆JES)meas − e/(da− be)×∆mmeas

+ (ec− af)/(da− be) (7.6)

However, in our case we can simplify the calibration procedure somewhat. First,

we notice from the upper right plot of Figure 7.4 that the dependence of the

measured ∆JES on the true top mass is negligible, so we can set e = 0 in the above

equation.

To determine a and c, we look at PEs where the input ∆JES is 0 (thus elimi-

nating the effect of the b term), as shown in Figure 7.2. From these fits, we can

directly obtain a = 0.957 and c = −0.597. Similarly, to determine d and f , we ex-

amine the output ∆JES for pseudo-experiments with varying values of input ∆JES

and a fixed mt = 172 GeV/c2, as shown in Figure 7.3. From these fits we obtain

d = 0.893 and f = −0.303.
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With these PEs, we can perform 1-D calibrations on the mass and the ∆JES

variables ignoring the dependence of mt on ∆JES. Figures 7.5 and 7.6 show the

resulting mt and ∆JES measurements after these 1-D calibrations are applied; we

can see that for the cases of ∆JES fixed at 0 and mt fixed at 172 GeV/c2, respec-

tively, the 1-D calibrations lead to a bias of 0, slope of 1, and pull width of 1, as

desired.

However, as we have seen, there is still a dependence of the top mass on the

∆JES. To obtain the relevant parameter (the b/a in the above equation), we fit the

observed shift in mt after the 1-D calibrations are applied against the input ∆JES.

We observe, as shown in Figure 7.7, that a shift of ∆JES = 1 yields a shift in the

top mass of 0.28. Hence, we have that b/a = 0.28.

Hence, our final calibration formula is:

∆mcalib = (∆mmeas + 0.597)/0.957− 0.28× (∆JES)calib (7.7)

(∆JES)calib = ((∆JES)meas + 0.303)/0.893 (7.8)

We also calibrate the measured uncertainties using the slopes measured above

and the pull widths. From Figures 7.2 and 7.3 we obtain a pull width of 1.165 for

the mass measurement and 1.089 for the ∆JES measurement. Hence, we have

(σm)calib = (σm)meas × 1.165/0.957

(σ∆JES
)calib = (σ∆JES

)meas × 1.089/0.893

Figure 7.8 shows the full effects of the 2-D calibration for all of our Monte Carlo

samples.
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Figure 7.5: Pseudo-experiment results in the fully realistic case after the 1-D

calibration has been applied. Top left: reconstructed vs. input top mass; top

right: bias vs. input top mass; center left: expected uncertainty vs. input top

mass; center right: pulls vs. input top mass; bottom left: distribution of mass from

individual pseudo-experiments for mt = 172 GeV/c2; bottom right: distribution

of pulls for mt = 172 GeV/c2.
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Figure 7.6: Pseudo-experiment results in measuring the ∆JES value using the fully

realistic case after the 1-D calibration has been applied. Left: reconstructed ∆JES

vs. input ∆JES. Right: pull width for the ∆JES measurement vs. input ∆JES.
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Figure 7.7: Final calibration: Shift in mt vs. input ∆JES after the individual mass

and ∆JES calibrations have been applied.
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Figure 7.8: Top: Measured mt and ∆JES before applying the 2-D calibration.

Bottom: Measured mt and ∆JES after applying the 2-D calibration.
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7.5 Blind Samples

As a check to ensure that our method is unbiased after the calibration is applied,

we also test our analysis on ten “blind samples”, samples prepared by the CDF Top

Mass Group conveners where the true top mass is hidden from us. (These samples

do not have a ∆JES shift, however, so we assume ∆JES = 0 when measuring them.)

The results, as plotted by the conveners, are shown in Figure 7.9 and Fig-

ure 7.10. The blind sample biases are consistent with 0 and the pulls with 1, so

we conclude that our calibration works successfully for ∆JES = 0.
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Figure 7.9: Measured bias (left) and pull width (right) for the ten blind samples.

The numbering of the samples is randomized to avoid identification.

7.6 Other PE Results

As we have noted, since we know that our model is not completely perfect, we do

not expect the bias and pull width to be perfectly 0 and 1, respectively. However,

we can run PEs with other configurations of events to see if we can identify which

events create the most problems for our analysis, to identify areas where we can
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Figure 7.10: Distributions for bias (left), expected uncertainty (center), and pull

(right) for individual PEs across the ten blind samples.

improve in future versions. Similarly, we can also run PEs in which various parts

of our analysis are not used, so that we can quantify the improvements obtained

by using them.

Table 7.1 shows some of these results. The various configurations used are:

• Signal only: In this setup, the analysis is performed using signal events only

without any background. The background handling procedure is not used.

We use 513.4 events per PE in this case, which is the expected number of

signal events passing our likelihood cut in our sample.

• Good signal only: This is as above, except the bad signal events are also

removed, leaving only good signal events in the PE. In this case, the likelihood

cut is not used. This uses 368.1 events per PE, which is the expected number

of good signal events.

• No background handling: This uses the fully realistic signal+background

setup, but the background handling procedure described in Section 6.3 is

not used. This allows us to examine the improvement obtained by using the

modified likelihood.
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• No likelihood cut: This uses the fully realistic setup, but without the likeli-

hood cut described in Section 6.4. This allows us to isolate the improvement

obtained by using this cut. In this case, 738 events per PE are used.

Table 7.1: Summary of PE results for different PE configurations to isolate the

effects of various types of events and features of our analysis.

Input used Avg. bias Slope σ at 172 GeV/c2 Avg. pull

Fully realistic -0.60 ± 0.05 0.957 ± 0.009 1.13 ± 0.01 1.17 ± 0.01

Good signal only 0.04 ± 0.05 0.976 ± 0.009 0.99 ± 0.01 0.95 ± 0.01

Signal only -0.56 ± 0.05 0.962 ± 0.009 1.02 ± 0.01 1.05 ± 0.01

No bg handling -1.90 ± 0.05 0.925 ± 0.009 1.11 ± 0.01 1.16 ± 0.01

No likelihood cut -0.67 ± 0.05 0.993 ± 0.008 1.27 ± 0.01 1.35 ± 0.01

As we can see, when we restrict our sample of events to only good signal, which

are the events that our model is actually designed to describe, we obtain a bias

consistent with 0 and a pull width actually slightly less than unity, although the

slope is still slightly smaller than 1; overall, we conclude that our model performs

well on good signal events. Figure 7.11 displays the plots of the PE results in

the good signal only case. Going from good signal only to all signal results in

a worse resolution, bias, slope, and pull width, indicating that the presence of

bad signal events which our model is ill-equipped to handle is a main contributor

to the imperfect results we obtain. Furthermore, going again from the all signal

only case to the fully realistic case again results in worse performance across the

board, indicating that the imperfections in our background method do hurt our

final result.
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The likelihood cut can be seen to improve our resolution and pulls substantially,

despite the fact that it reduces the size of the event sample; this indicates that

the likelihood cut does a good job at removing the poorly-behaved bad signal and

background events. In contrast, the background handling has almost no effect on

the resolution, although it does dramatically improve the bias and slope. This may

be due to the fact that our discriminant simply does not discriminate well enough

for us to see a substantial improvement by using it.
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Figure 7.11: Pseudo-experiment results using only good signal events. The ex-

pected number of events is 368.1, with no likelihood cut used. Top left: recon-

structed vs. input top mass; top right: bias vs. input top mass; center left:

expected uncertainty vs. input top mass; center right: pulls vs. input top mass;

bottom left: distribution of mass from individual pseudo-experiments for mt =

172 GeV/c2; bottom right: distribution of pulls for mt = 172 GeV/c2.
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Chapter 8

Data Result
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As mentioned in Section 4.3, we observe a total of 738 events passing our

initial selection cuts, 590 single-tag and 148 with two or more tags. After applying

the additional likelihood cut, 630 events remain, of which 493 are single-tag and

137 multiple-tag. We compute the likelihood for each of these events, apply the

background subtraction procedure in Section 6.3, use the profile likelihood method

to obtain a 1-D measurement, and then apply the calibration in Section 7.4, thus

extracting a measured mass and uncertainty of:

mt = 172.64± 1.13 GeV/c2 (8.1)

As noted in Section 5.2, this statistical uncertainty includes the uncertainty in

mt alone as well as the uncertainty due to the ∆JES parameter. To separate the

uncertainty due to these two causes, we reduce the 2-D likelihood to 1-D by taking

the likelihood in the ∆JES = 0 bin (essentially, thus, as if we had never used the

∆JES parameter). This results in an uncertainty of 0.86 GeV/c2. We thus subtract

in quadrature to conclude that the remaining uncertainty of 0.73 GeV/c2 is due to

the ∆JES and report a final measurement of:

mt = 172.64± 0.86 (stat.)± 0.73 (JES) GeV/c2 (8.2)

The measured value of ∆JES, after the full calibration, is:

∆JES = 0.30± 0.23 σ (8.3)

This measurement is consistent with zero, as we would hope.

Figure 8.1 shows the 2-D likelihood for single-tag, multiple-tag, and all events.

These plots include the full 2-D calibration. These plots show that the total

likelihood is well-behaved over the full mt and ∆JES range used in our integration.

Figure 8.2 shows the contours corresponding to a 1-σ, 2-σ, and 3-σ statistical

uncertainty around the peak, as well as the 1-D profile likelihood obtained from

the 2-D curve.1
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Figure 8.1: Fully calibrated 2-D likelihood for the data events. Top left: 1-tag

events. Top right: >1-tag events. Bottom: Combined 1-tag and >1-tag. The

marker shows the point of maximum likelihood.
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peak of the likelihood after all calibration has been applied. Right: 1-D likelihood
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likelihood curve.

Figure 8.3 shows the expected statistical uncertainty from an ensemble of PEs

at a top mass of 172 GeV/c2, with the uncertainty from the data measurement

shown as the black arrow. 52% of pseudo-experiments show a lower uncertainty

than measured in the data, indicating that our expected uncertainty is almost

exactly what we expected from PEs.

As our likelihood cut method assumes that the distribution of the log-likelihood

peaks for data follow the same shape as for Monte Carlo, we plot the log-likelihood

value of the likelihood curve at its peak for each data event against a Monte Carlo

distribution derived by taking the distribution for each individual subsample and

adding them up according to their expected fraction. The results are shown in

Figure 8.4; the vertical line indicates the value of the likelihood cut used. A K-S

test indicates a confidence level of 0.73, showing good agreement between the data

and the Monte Carlo.

1Note that, because we always use the profile measurement to obtain a mt and ∆JES mea-
surement separately, the ∆(log L) values used to obtain these contours are those appropriate to

a 1-D measurement. Thus, it is correct to view the left and right edges of this oval as defining

the 1-D uncertainty on mt, but it is not correct to view the oval itself as defining the 2-D joint

uncertainty in mt and ∆JES.
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8.1 Data Subsamples

As a crosscheck, both to check the validity of our method and to make sure that

the data itself is consistent, we try dividing the data into different subsamples and

measuring the resulting top mass and ∆JES in each subsample. The results are in

Table 8.1. These results have been corrected using the same calibration as used in

the main measurement.

Table 8.1: Data crosschecks on various subsamples of the data. The number of

events listed is the number passing the likelihood cut out of the total number

passing the other selection cuts.

Subsample Events Measured mt (GeV/c2) Measured ∆JES (σ)

All data 630/738 172.64 ± 1.13 0.30 ± 0.23

electron events 364/422 172.83 ± 1.49 0.38 ± 0.31

muon events 266/316 172.02 ± 1.66 0.30 ± 0.35

single-tag events 493/590 171.83 ± 1.29 0.23 ± 0.27

multiple-tag events 137/148 174.42 ± 2.37 0.68 ± 0.48

positive leptons 287/339 173.50 ± 1.75 0.23 ± 0.35

negative leptons 343/399 171.77 ± 1.47 0.45 ± 0.32

periods 0-7 173/200 169.17 ± 1.95 0.75 ± 0.43

periods 8-12 152/174 173.96 ± 2.46 -0.67 ± 0.48

periods 13-19 172/204 173.08 ± 2.00 0.97 ± 0.44

periods 20-23 133/160 174.36 ± 2.98 0.15 ± 0.56

First 3.2 fb−1 497/578 172.20 ± 1.19 0.38 ± 0.26

While we do observe some differences between the samples, none of them is
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statistically particularly significant, and all of them are consistent with patterns

observed by other CDF groups. We also cross-check our method by comparing our

result on the first 3.2 fb−1 of data to our previous result from that dataset, 172.14

± 1.19 GeV/c2, and note good agreement.
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Chapter 9

Systematic Uncertainties
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So far, we have only considered the statistical uncertainties of our measurement.

However, there are many potential sources of systematic uncertainty as well. Many

of these arise from areas where there is an inherent uncertainty in how well the

Monte Carlo models the data, and so even if our analysis performs completely

perfectly on Monte Carlo, we need to account for this potential mismodeling.

Table 9.1 lists all of the systematics evaluated in this measurement. We assume

that the individual systematics are uncorrelated and Gaussian1 and add them

in quadrature to obtain a final systematic uncertainty of 1.11 GeV/c2. These

systematics are individually discussed in the following sections.

Broadly speaking, there are two different types of systematics. The first is

where we can associate the uncertainty with a well-defined 1σ uncertainty in a

given parameter. In this case, we vary that parameter by its uncertainty and

measure the resulting change in the top mass. In this case, we define the systematic

uncertainty as |m+−m−|/2. (This assumes that m+ and m− lie on opposite sides

of the unshifted mass. If they lie on the same side, we define the systematic

uncertainty as half of the largest of |m+ − m0|, |m− − m0|, and |m+ − m−|.)

The second is where we do not have a well-defined 1σ shift in a parameter. In

this case, we generate one or more alternatives which we hope cover the space

of possibilities and take the largest difference between the nominal mass and the

various alternatives as our systematic shift.

There are three ways in which the systematics are measured. One is to generate

an entirely new Monte Carlo signal or background sample in which the parameter of

interest has been varied. In this case, the two samples are statistically independent,

so we take the larger of the difference or the uncertainty on the difference as our

actual systematic. For this reason, we often use more than the standard 8k or 16k

events in these systematics, so that the uncertainty on the difference is reduced.

In this case, the uncertainty on the mass measurement is calculated using the

1As we will see, not all of the systematics are necessarily actually Gaussian, but we have to

make this assumption to sensibly combine them.
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method described in Section 7.2. A second way is to take the standard ttkt72

sample for mt = 172 GeV/c2 and to modify it to vary the quantity of interest.

In this case, because the samples are completely correlated2, the uncertainty on

the difference is zero, so to reduce the time required to process these samples, we

use fewer events, typically 5k. The third type of systematic does not change the

underlying Monte Carlo sample at all, but rather attaches weights to the individual

events. Then, when we run the PEs, the probability of selecting an event to be

used is proportional to its individual weight. This does not require redoing the

integration, so we can use as many events as we have.

The pseudo-experiment procedure used for systematic samples is the same as

that used for the regular samples; signal and background are used in their ex-

pected proportions and then the full 2-D calibration described in Section 7.4 is

applied to the result. (Note that, in most cases, only the signal sample is changed;

the background sample is only changed for the residual JES and background Q2

systematics.) Since we are only generally interested in the systematic shift of mt,

we do not compute the systematics for the ∆JES measurement; however, since the

2-D calibration requires that both mt and ∆JES be measured, we do include the

measured ∆JES value as well.

9.1 Calibration

Since we use the calibration constants derived in Section 7.4 to correct our final

result, any uncertainty in these constants naturally translates into an uncertainty

on that result. Our quoted uncertainty includes two sources: first, the uncertainty

on our fitted bias of −0.60± 0.05 GeV/c2, which results directly in an uncertainty

on our measurement, and second, the uncertainty in the slope of the mt response

with respect to ∆JES. Since we measure a ∆JES of 0.30 ± 0.23 with a slope of 0.28

± 0.10, we obtain that the uncertainty due to this term is ± 0.09 GeV/c2. (There

2Or, in the case of the residual JES, very highly correlated.
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Table 9.1: Total list of sources of systematic uncertainty and their resulting mea-

sured uncertainty in the mt measurement.

Systematic source Systematic uncertainty (GeV/c2)

Calibration 0.10

MC generator 0.56 ± 0.24

ISR and FSR 0.26 ± 0.13

Residual JES 0.52

b-JES 0.38

Lepton pT 0.18

Permutation weighting 0.01

Multiple hadron interaction 0.10

PDFs 0.17

Background: fraction 0.33

Background: composition 0.36

Background: average shape 0.03

Background: Q2 0.08 ± 0.07

Background: MC statistics 0.05

Gluon fraction 0.00

Color reconnection 0.32 ± 0.25

Total 1.11
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is also a potential third source of uncertainty from the slope calibration constant,

but the uncertainty due to this source is negligible compared to the preceding two.)

Adding these in quadrature yields a total uncertainty of 0.10 GeV/c2.

9.2 Monte Carlo generator

Most features of our analysis (e.g., the transfer functions) are derived from the

pythia Monte Carlo generator, and the samples used for the testing and calibra-

tion are also all derived from pythia. Thus, it is important to check that our

results are consistent with other Monte Carlo generators. We thus compare her-

wig and pythia samples generated at a top mass of 172.5 GeV/c2. (Note that to

reduce the uncertainty on the difference, we use 24k events.) The results are shown

in Table 9.2. We take the difference of 0.56 GeV/c2 as our systematic uncertainty.

Table 9.2: Generator systematics. All samples have a nominal mt of 172.5 GeV/c2.

Sample Meas. mt (GeV/c2) Meas. ∆JES (σ) ∆mt (GeV/c2)

pythia (ttop25) 172.90 ± 0.17 0.03 ± 0.04 —

herwig (dtops0) 172.34 ± 0.17 0.38 ± 0.04 -0.56 ± 0.24

9.3 ISR and FSR

The amount of initial state radiation (ISR) and final state radiation (FSR) present

in the Monte Carlo is subject to a systematic uncertainty. To evaluate the uncer-

tainty on the amount of radiation present, we use a control sample of Drell-Yan

events to measure the amount of ISR present in events as a function of the dilepton

invariant mass. We can then extrapolate this quantity and its uncertainty to tt̄

mass scales and, since the physical processes governing ISR and FSR are the same,
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assume that this uncertainty also applies to FSR, thus obtaining an estimate of

the uncertainty on the pythia parameters governing ISR and FSR [57].

Two pythia samples are then generated, one featuring increased ISR and FSR

and one featuring decreased ISR and FSR (note that ISR and FSR are increased

or decreased together). We integrate 24k events from these samples; the results

are shown in Table 9.3.

Table 9.3: Systematics from ISR/FSR. All samples are generated with pythia

with a nominal mt of 172.5 GeV/c2.

Sample Meas. mt (GeV/c2) Meas. ∆JES (σ) ∆mt (GeV/c2)

Nominal (ttop25) 172.90 ± 0.17 0.03 ± 0.04 —

more ISR/FSR (dtops1) 172.39 ± 0.18 0.26 ± 0.04 -0.51 ± 0.25

less ISR/FSR (dtops2) 172.50 ± 0.17 0.11 ± 0.04 -0.40 ± 0.24

We take as our systematic half the difference between the largest pair, which in

our case is the nominal and more ISR/FSR sample, yielding a systematic of 0.26

± 0.13 GeV/c2.

9.4 Residual JES

Our 2-D likelihood method, by definition, is designed so that the measured top

mass should not change if the jets are all shifted by their uncertainty, and this

uncertainty depends on the pT and η for each jet. However, as we saw in Section

3.4.2, the jet corrections (and their corresponding uncertainties) are composed of

several different components, each of which has different behavior with respect to

pT and η. Consequently, a shift of 1σ in, for instance, the level 5 correction alone

may produce behavior which will not be corrected for in our 2-D method. Note
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that, although our jets are only corrected to level 5, we need to account for the

systematic uncertainties in all levels of the jet corrections.

To evaluate a systematic due to this effect, we take our normal 172 GeV/c2

signal sample and shift the jets up or down by the uncertainty for each individual

jet correction level. (Note that, for this test, we integrate only 5k signal events

for each shift. These 5k events are not necessarily identical for each shift, since

we allow events to enter or leave the samples if the shift changes their jet energies

appropriately, but they are highly correlated.) We also cross-check by shifting

the background samples as well; however, shifting all of the background samples

at all of the individual shift levels would be prohibitively time-consuming, so as

a compromise, we shift all of the background samples for levels 5 and 7, which

are are two largest systematics; for the other four levels, we use only the W + bb̄

background so that we only need to shift that one sample.

Table 9.4 shows the results. For the case where only signal is shifted, we

measure shifts of 0.06, 0.02, 0.40, 0.10, 0.18, and 0.14 GeV/c2 for levels 1, 4, 5,

6, 7, and 8, respectively. Adding these shifts in quadrature yields a total error

of 0.48 GeV/c2. For the case where signal and background are shifted together,

we obtain shifts of 0.37 and 0.28 for levels 5 and 7 (using all backgrounds) and

0.08, 0.02, 0.14, and 0.16 for levels 1, 4, 6, and 8, respectively (using W + bb̄ only).

We take the conservative estimate of using the higher shift for each level and add

them in quadrature to obtain a total of 0.52 GeV/c2, which we take as our final

uncertainty due to residual JES.

9.5 b-jet energy scale

So far, we have assumed that the JES is the same for all jets. However, there is

an additional uncertainty arising from relative differences between b and light jets.

(Note that the jet systematic uncertainties are predominantly determined using

light jets.) We identify three sources of uncertainty: one due to the uncertainty in
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Table 9.4: Systematics for the residual JES uncertainty. All samples are based on

5k events from the ttkt72 sample with a nominal mass of 172.

Sample Meas. mt (GeV/c2) Meas. ∆JES (σ)

Nominal 172.28 ± 0.37 -0.01 ± 0.08

Level 1 +1σ 172.38 ± 0.38 0.17 ± 0.08

Level 1 −1σ 172.27 ± 0.37 -0.18 ± 0.08

Level 4 +1σ 172.30 ± 0.38 0.01 ± 0.08

Level 4 −1σ 172.30 ± 0.37 -0.04 ± 0.08

Level 5 +1σ 172.79 ± 0.38 0.48 ± 0.08

Level 5 −1σ 172.00 ± 0.36 -0.54 ± 0.08

Level 6 +1σ 172.23 ± 0.37 0.08 ± 0.08

Level 6 −1σ 172.43 ± 0.37 -0.12 ± 0.08

Level 7 +1σ 172.16 ± 0.37 0.75 ± 0.07

Level 7 −1σ 172.52 ± 0.38 -0.79 ± 0.08

Level 8 +1σ 172.15 ± 0.41 0.13 ± 0.08

Level 8 −1σ 172.42 ± 0.37 -0.15 ± 0.08

Level 5 s+b +1σ 172.71 ± 0.37 0.51 ± 0.08

Level 5 s+b −1σ 171.97 ± 0.37 -0.55 ± 0.08

Level 7 s+b +1σ 172.05 ± 0.36 0.75 ± 0.07

Level 7 s+b −1σ 172.60 ± 0.37 -0.79 ± 0.08

Nominal Wbb̄ bkgd only 172.19 ± 0.38 -0.01 ± 0.08

Level 1 s+Wbb̄ +1σ 172.22 ± 0.37 0.17 ± 0.08

Level 1 s+Wbb̄ −1σ 172.27 ± 0.37 -0.22 ± 0.08

Level 4 s+Wbb̄ +1σ 172.17 ± 0.38 0.02 ± 0.08

Level 4 s+Wbb̄ −1σ 172.18 ± 0.37 -0.04 ± 0.08

Level 6 s+Wbb̄ +1σ 172.06 ± 0.37 0.08 ± 0.08

Level 6 s+Wbb̄ −1σ 172.33 ± 0.37 -0.13 ± 0.08

Level 8 s+Wbb̄ +1σ 172.05 ± 0.38 0.12 ± 0.08

Level 8 s+Wbb̄ −1σ 172.37 ± 0.37 -0.16 ± 0.08
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the semileptonic decay ratio, which we evaluate by reweighting the ttkt75 sam-

ple to vary this ratio by ±1σ; one due to the uncertainty in the b-fragmentation

modeling, which we evaluate by varying the parameters used in the Bowler frag-

mentation model [58] in the pythia Monte Carlo generator, using two different

sets of parameters derived from SLD and LEP results [59]; and one due to uncer-

tainty in the calorimeter response3, which we evaluate by shifting the ET of jets

identified as b jets in the ttkt72 sample by 1% and then multiplying by 0.2, as the

expected uncertainty from this source is 0.2%. The results are shown in Table 9.5.

For the uncertainty due to the semileptonic fraction, we take half of the mea-

sured diffference, or 0.10 GeV/c2; for the uncertainty due to the b fragmentation

model, we take the single largest shift, or 0.35 GeV/c2; and for the uncertainty

due to the calorimeter response, we follow the procedure above to obtain an un-

certainty of 0.12 GeV/c2. Adding these in quadrature yields an overall uncertainty

of 0.38 GeV/c2.

9.6 Lepton pT

There is also a systematic uncertainty on the lepton energy scale, although it is

much simpler than the uncertainty for the jet energy scale; it has been measured

to be a systematic uncertainty of ±1% on the lepton pT . We thus evaluate this

systematic by taking the nominal ttkt72 sample, shifting the lepton energies by

±1%, and measuring the resulting top mass; we take half of the resulting difference,

0.18 GeV/c2, as our systematic.

3Specifically, because the charged particle fraction and momentum spectrum of b-jets is dif-

ferent from that of light jets, the calorimeter response may be different.
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Table 9.5: Systematics for the b-JES.

Sample Meas. mt (GeV/c2) Meas. ∆JES (σ)

Nominal mt = 175 GeV/c2 175.00 ± 0.26 0.01 ± 0.07

Semileptonic fraction +1σ 174.93 ± 0.26 -0.02 ± 0.07

Semileptonic fraction −1σ 175.12 ± 0.26 0.04 ± 0.07

LEP b fragmentation model 174.65 ± 0.26 0.07 ± 0.07

SLD b fragmentation model 174.69 ± 0.26 0.06 ± 0.07

Nominal mt = 172 GeV/c2 171.93 ± 0.26 0.01 ± 0.06

b-jets +1% 172.84 ± 0.38 0.00 ± 0.08

b-jets -1% 171.67 ± 0.38 -0.06 ± 0.08

Table 9.6: Systematics for the lepton PT uncertainty. All samples use 5k events

from the ttkt72 sample with a nominal mass of 172.

Sample Meas. mt (GeV/c2) Meas. ∆JES (σ)

Nominal 172.28 ± 0.37 -0.01 ± 0.08

Lepton pT +1% 172.46 ± 0.38 -0.01 ± 0.08

Lepton pT -1% 172.10 ± 0.37 0.02 ± 0.08
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9.7 Permutation weighting

The permutation weights wi, as described in Section 5.9, are derived from the fits

to the tagging probabilities as measured in data, so we need to assign a systematic

uncertainty due to the uncertainty in these fits. We estimate that the main source

of uncertainty is the ratio of charm tags to b-tags, which is nominally 22%, so

we vary this ratio by its relative uncertainty of 15%. We take half the resulting

difference, 0.01 GeV/c2, as our systematic.

Table 9.7: Systematics for the permutation weighting uncertainty. All samples use

5k events from the ttkt72 sample with a nominal mass of 172 GeV/c2.

Sample Meas. mt (GeV/c2) Meas. ∆JES (σ)

Nominal 172.28 ± 0.37 -0.01 ± 0.08

Charm ratio +1σ 172.28 ± 0.39 -0.02 ± 0.08

Charm ratio −1σ 172.29 ± 0.37 0.00 ± 0.08

9.8 Multiple hadron interaction

Multiple hadron interaction (also known as “pileup”) represents the systematic

associated with our modeling of multiple pp̄ interactions in a single event. We

consider two sources of uncertainty due to this effect. First, we consider the fact

that most of our Monte Carlo samples are generated to match the earlier run range

of the detector. However, as the average luminosity observed in the detector has

increased over time, the average number of interactions in our Monte Carlo samples

is now lower than the average number of interactions observed in data. To estimate

this effect, we take a Monte Carlo sample generated with a higher average number

of interactions, utop75, and divide it into subsamples with 1, 2, 3, and 4 or more
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vertices, and then measure the top mass in each subsample separately. The results

are shown in Figure 9.1; from a linear fit, we obtain the slope of mt vs. number

of vertices to be 0.20 ± 0.16 GeV/c2/vertex. Given that the average number of

vertices in the data is 2.16 and in the normal signal + background MC is 1.53, we

multiply the difference by this slope to assign an uncertainty of 0.13 GeV/c2 due

to this source.
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Figure 9.1: Measured top mass vs. number of vertices, as measured by separating

the utop75 sample into independent subsamples.

Second, we consider the modeling of additional interactions in an event. The

level 4 jet correction is intended to correct for the effect of additional interactions

on the jet response, but since this correction is derived from minimum bias events,

we consider the possibility that it may not correctly model tt̄ events. Studies show

that the uncertainty can be estimated by scaling up the level 4 jet systematic

uncertainty by a factor of 2.3, and then correcting this further to account for the

different number of vertices in data and MC. Using the observed L4 systematic of

0.02 GeV/c2 yields an uncertainty of 0.10 GeV/c2. We take the larger of these two

sources, which in this case yields 0.13 GeV/c2 as our systematic uncertainty.
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9.9 Parton distribution functions

Our analysis uses parton distribution functions to give the probability distribution

for the momentum of the incoming partons. Naturally, there is some uncertainty

in the determination of these PDFs, which results in a systematic uncertainty in

our results.

We examine a total of 46 different PDF sets. In addition to the default CTEQ5L

set, we also examine two sets of MRST [60] PDFs, MRST72 and MRST75, where

MRST72 uses the same value of αs as CTEQ5L and MRST75 a different value;

CTEQ6L and CTEQ6L1, which use different αs calculations, and finally CTEQ6M

and variation of 20 different eigenvectors in CTEQ6M up and down. The results

for all of these sets are shown in Figure 9.2.

We use the guidelines established by the CDF Top Group to obtain our final

systematic, in which we consider the difference between CTEQ5L and MRST72

(to evaluate the uncertainty due to the PDF set used), MRST72 and MRST75 (to

evaluate the uncertainty due to the αs value used), and each pair of eigenvectors in

CTEQ6M added in quadrature (to evaluate the uncertainty in the PDF set itself).

The CTEQ5L-MRST72 difference is ignored, as it is smaller than the uncertainty

from the CTEQ eigenvectors, and we add the remaining variations in quadrature

to obtain our final uncertainty of 0.17 GeV/c2.

9.10 Background

In addition to the systematics previously discussed, which mostly derive from

our modeling of the tt̄ signal, there are also a variety of sources of systematic

uncertainties in our background model. We identify five sources and evaluate the

systematic uncertainty from them as follows:

The first uncertainty is the uncertainty on the background fraction used in

our analysis. This uncertainty is measured by shifting the total percentage of
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Figure 9.2: Variation of measured top mass with different sets of parton distribu-

tion functions (PDFs).

background present in our PEs up and down by 1σ. This uncertainty includes

three sources:

1. The uncertainty on the background estimate listed in Table 4.2.

2. The uncertainty in the background fraction corresponding to a 1σ variation

of ∆JES. We calculate this uncertainty by shifting our samples by 1σ, calcu-

lating the ratio of acceptance for signal and background, and recomputing

the background fraction appropriately.

3. The binomial uncertainty on the acceptance of our likelihood cut.

These three sources are summarized in Table 9.8; the total of these in quadra-

ture is thus our uncertainty on the total background fraction. We then perform

PEs with the shifted background fraction and take half the resulting difference.

The second source of uncertainty is the uncertainty in the background compo-

sition. For the background fraction, the overall fraction is changed but the relative
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Table 9.8: Sources of uncertainty in the background fraction used in our PEs.

1-tag >1-tag

Nominal background fraction 26.54% 10.36%

Estimate uncertainty ± 6.90% ± 3.68%

JES uncertainty ± 3.41% ± 1.29%

Likelihood cut uncertainty ± 0.16% ± 0.18%

Total uncertainty ± 7.70% ± 3.90%

composition of the background remains the same, so we also would like to assess

the potential systematic due to the relative composition. To do this, we take the

maximally conservative approach of running PEs where the background events are

entirely of a single type: either W +bb̄, W +cc̄, W +c, W+light, single-top, or QCD

events. We then take the largest difference as our uncertainty due to background

composition.

The third source of uncertainty is to the average background shape, the

Lbg(mt, ∆JES) used in the background subtraction method discussed in Section

6.3. To assess a potential systematic from this source, we divide the background

events into two independent subsamples, one with odd-numbered events and one

with even-numbered events. We then build the background likelihood curve using

events only from one sample and perform the PEs with events only from the other

subsample and take the resulting largest difference as our systematic uncertainty.

The next source of uncertainty comes from the Q2 scale used to generate the

hard scatter process in W + jets events. alpgen controls this Q2 scale through two

parameters, ktfact and qfact, so we generate samples in which they have been

doubled to 2.0 or decreased to 0.5. Note that this also changes the cross-section

times acceptance values which we use to weight the W + bb̄ + 2p vs. W + bb̄ + 1p
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sample contributions, so we recalculate the relative fractions appropriately.

Finally, we have to consider an uncertainty due to the limited background MC

statistics. The calibration systematic covers this uncertainty for the signal, but

the background is not yet accounted for. To evaluate this systematic, then, we use

the bootstrap method where only the background samples are bootstrapped, and

obtain an uncertainty of 0.05 GeV/c2. We thus take this as our uncertainty due

to limited statistics.

(Note that since the background Q2 involves separate samples, we have to

calculate the appropriate error on the difference. Using the above error of 0.05

on the mass due to the background alone, we thus obtain an error of 0.07 for the

difference between two different measurements.)

All of the background systematic results are summarized in Table 9.9.

Based on these results, we assign a systematic of 0.33 GeV/c2 for background

fraction, 0.36 GeV/c2 for background composition, 0.03 GeV/c2 for the average

background shape, and 0.08 GeV/c2 for the background Q2 scale, in addition to

the 0.05 GeV/c2 already mentioned for the limited background MC statistics.

9.11 Gluon fraction

herwig and pythia are both leading-order MC generators, so tt̄ events in these

samples are approximately 95% produced from qq̄ annihilation and 5% produced

from gg fusion. However, NLO expectations are closer to 15% ± 5% gg produc-

tion. To check for a potential systematic due to this discrepancy, we run pseudo-

experiments where qq̄ and gg events have been reweighted so that the sample is

expected to contain 80% qq̄ events and 20% gg events (we choose the maximal gg

percentage to be conservative). These results are shown in Table 9.10; we observe

no difference in this case, so we take no systematic uncertainty from this source.
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Table 9.9: Background systematics.

Sample Meas. mt (GeV/c2) Meas. ∆JES (σ) ∆mt (GeV/c2)

Nominal mt = 172 172.02 ± 0.26 0.02 ± 0.07 —

Background frac. +1 σ 171.64 ± 0.26 -0.03 ± 0.07 -0.38

Background frac. -1 σ 172.30 ± 0.26 0.09 ± 0.06 0.28

100% W + bb̄ bg 171.92 ± 0.26 0.02 ± 0.07 -0.10

100% W + cc̄ bg 171.69 ± 0.26 0.01 ± 0.06 -0.33

100% W + c bg 172.34 ± 0.26 -0.11 ± 0.07 0.32

100% W+light bg 172.38 ± 0.26 0.13 ± 0.07 0.36

100% single-top bg 172.32 ± 0.26 0.26 ± 0.07 0.30

100% QCD bg 171.91 ± 0.26 -0.10 ± 0.07 -0.11

odd Lbg, even events 171.97 ± 0.26 0.02 ± 0.06 -0.03

even Lbg, odd events 172.02 ± 0.26 0.06 ± 0.06 0.02

ktfact = qfact = 2.0 171.95 ± 0.26 0.03 ± 0.06 -0.05 ± 0.07

ktfact = qfact = 0.5 171.92 ± 0.26 0.03 ± 0.06 -0.08 ± 0.07

Table 9.10: Systematics for gluon fraction, evaluated by reweighting the ttkt72

sample for the nominal mt = 172 GeV/c2 sample.

Sample Meas. mt (GeV/c2) Meas. ∆JES (σ) ∆mt (GeV/c2)

Nominal 171.93 ± 0.26 0.01 ± 0.06 —

80% qq̄, 20% gg 171.93 ± 0.26 0.03 ± 0.07 0.00
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9.12 Color reconnection

One important effect so far not considered in our analysis is the effect of color

reconnection; that is, the effect of the color connection of the tt̄ decay products to

the beam remnants (the quarks in the initial pp̄ system not involved in the primary

interaction). While the pythia samples used in our analysis are generated using

pythia 6.2 and do not include this effect, the latest pythia version, pythia 6.4,

includes options to perform this color reconnection [61].

To measure the systematic uncertainty, we compare the nominal ttop25 sample

with two new samples generated with pythia 6.4. Tune Apro is an updated version

of the standard Tune A, while Tune ACRpro is the same with the color reconnection

turned on. We show the results in Table 9.11.

The difference between the Tune Apro and Tune ACRpro tunes is 0.32 ± 0.25

GeV/c2, which we take as our current color reconnection systematic.

Table 9.11: Color reconnection studies. All samples have a nominal mt of 172.5

GeV/c2 and use 24k integrated events.

Sample Meas. mt (GeV/c2) Meas. ∆JES (σ)

Nominal 6.2 (ttop25) 172.90 ± 0.17 0.03 ± 0.04

6.4 Tune Apro (ctopsd) 172.77 ± 0.18 0.05 ± 0.04

6.4 Tune ACRpro (otop46) 172.45 ± 0.18 0.17 ± 0.04
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Chapter 10

Conclusion
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In this thesis, I have presented the results of a very precise top quark mass

measurement. Using a total of 738 events before and 630 events after the likelihood

cut, we have obtained a measured value of:

mt = 172.6 ± 0.9 (stat.) ± 0.7 (JES) ± 1.1 (syst.) GeV/c2

= 172.6 ± 1.6 (total) GeV/c2.

This measurement was performed using a matrix element method, which has

proven itself to produce the most precise top mass measurements. However, the

enhancements included in this analysis, specifically the use of Quasi–Monte Carlo

integration to allow us to integrate over a higher-dimensionality phase space, have

resulted in a measurement superior to other matrix element analysis and one that

is currently the single most precise top mass measurement in the world.

Of course, top mass measurement is an extremely competitive field, and we

are always looking for ways to improve. As we saw in Section 7.6, the bad signal

events present a serious problem to our model, as they result in a reduced resolution

despite the fact that they still contain useful information. We are currently actively

researching a method to handle these bad signal events by integrating over the tt̄

jet that is lost when one of these events takes place, and we hope that this will

result in a method which will allows us to recover the information about the top

mass still remaining in bad signal events.

Other potential areas of improvement include the background treatment. While

our neural network shows promising results, to date, we have not seen a signifi-

cant improvement from using it, suggesting that it needs to be more effective at

discriminating signal from background in order to produce a gain in resolution.

The possibility also exists that we could replace the current background method

with a full background likelihood, which would be a more accurate model than the

current method.

Overall, we are pleased to have demonstrated the success of our method in

measuring the top quark mass, and hope to improve upon it in the future.
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Appendix A

Validation of the Data

Since this analysis is necessarily reliant on Monte Carlo simulation, we make a

variety of validation plots to check that various properties of the observed data do

indeed agree well with the Monte Carlo. The following plots show some quantities

of interest plotted for the data against the Monte Carlo for events which pass our

tt̄ selection requirements, where the Monte Carlo expectation is derived by taking

the samples described in Section 4.5 added together with the expected fractions

described in Section 4.4. The confidence level returned by a K-S test is indicated

on the plots. The tt̄ signal sample used here is ttop25, which has a top mass

of 172.5 GeV/c2 and a luminosity profile matching periods 0 through 19 of CDF

data.

Figure A.1 shows a comparison of the jet ET corrected to level 5 (as described in

Section 3.4.2) for the four tight jets, as well as for the fifth jet, if present. While we

do not actually use a fifth jet in this analysis, we include this plot for comparison

purposes. Figure A.2 shows a comparison of the 6ET , the total number of tight and

loose jets, the number of z vertices, the jet ET for jets with a b-tag, and the lepton

pT . Again, while we do not use loose jets (which are defined as jets with ET > 12

GeV/c2 and |η| < 2.4), we include them here for comparison purposes. Finally,

Figure A.3 shows a comparison between the leading jet ET and the lepton pT for
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events containing an electron and events containing a muon.

In general, the plots indicate a good level of agreement between the data and

the Monte Carlo. The main exception is the number of z vertices. This is due

to the fact that, while the tt̄ signal sample is designed to match the luminosity in

periods 0-19 of CDF operation, the most recent data has a higher luminosity and

hence a higher number of pp̄ interactions in a given event. Potential systematics

for this difference are addressed by the multiple hadron interaction systematic in

Section 9.8.

 (GeV)TE
50 100 150 200 250

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

 (GeV)TE
50 100 150 200 250

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

 (L5 corr)T1st jet E

Data (through period 23)
Mean = 88.64
RMS = 38.97

MC (signal + bkgnd)
Mean = 88.96
RMS = 36.32

K-S CL = 0.56

 (GeV)TE
20 40 60 80 100 120 140 160 180
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

 (GeV)TE
20 40 60 80 100 120 140 160 180
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

 (L5 corr)T2nd jet E

Data (through period 23)
Mean = 61.13
RMS = 23.82

MC (signal + bkgnd)
Mean = 60.74
RMS = 24.35

K-S CL = 0.47

 (GeV)TE
20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

 (GeV)TE
20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

 (L5 corr)T3rd jet E

Data (through period 23)
Mean = 42.90
RMS = 15.19

MC (signal + bkgnd)
Mean = 42.43
RMS = 15.12

K-S CL = 0.46

 (GeV)TE
20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 (GeV)TE
20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 (L5 corr)T4th jet E

Data (through period 23)
Mean = 29.73
RMS = 8.93

MC (signal + bkgnd)
Mean = 29.64
RMS = 8.97

K-S CL = 1.00

 (GeV)TE
0 10 20 30 40 50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 (GeV)TE
0 10 20 30 40 50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 (L5 corr)T5th jet E

Data (through period 23)
Mean = 12.39
RMS = 5.17

MC (signal + bkgnd)
Mean = 12.15
RMS = 5.67

K-S CL = 0.20

data (through period 23)
 signal (172.5 GeV all lumi)tt

W+4p (ptop4w/9w)
W+3p (ptop3w/8w)

+2p (btop2w/7w)bW+b
+1p (btop1w/6w)bW+b
+2p (ctop2w/7w)cW+c
+1p (ctop1w/6w)cW+c

W+c+3p (stopw3/w8)
W+c+2p (stopw2/w7)
1top s-chan (stop00)
1top t-chan (stopm0)
non-W QCD (non-iso)

Figure A.1: Comparison of jet energies between data and Monte Carlo for events

passing our selection cuts.
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Figure A.2: Comparison of other quantities of interest between data and Monte

Carlo for events passing our selection cuts.
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Figure A.3: Comparison of leading jet ET and lepton pT for events containing an

electron (left) and events containing a muon (right).
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Appendix B

Avoiding Phase Space

Singularities

Because solving the kinematic equations to determine the parton momentum re-

quires an 8th-degree polynomial, the space of allowed solutions can be rather com-

plex. Specifically, when considering the allowed values of the squared leptonic W

mass M2
W,lep vs. the neutrino z-momentum pνz, we can encounter problems in the

Jacobian for transforming between these two variables.

Figure B.1 illustrates (in somewhat simplified form) the basic problem. We

can see that
∂M2

W

∂pνz
goes to zero at a point. Thus, if we transform our integral from

depending on pνz to depending on M2
W , the Jacobian for this transformation will

go to zero at that point, and so, since the Jacobian is in the denominator, the

integrand will become infinite. (Of course, the full Jacobian is slightly more com-

plicated, but the problem is still the same.) Similarly, using pνz as the integration

variable will also fail in some cases, such as the one illustrated in Figure B.2.

To avoid these problems, the integration code switches between the two inte-

gration variables as necessary: normally M2
W is used, but when the distance to the

minimum M2
W point becomes less than two grid points, the integration switches

to using pνz instead (with the Jacobian changing appropriately). The code is also
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Figure B.1: One possible set of solutions to the kinematic equations in the space

of M2
W,lep vs. pνz.
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Figure B.2: A set of solutions in which both
∂M2

W

∂pνz
and ∂pνz

∂M2
W

are zero at different

points.

154



designed to handle particularly complicated cases such as that shown in Figure

B.3. In this way, we can still use the importance sampling technique as much as

possible, thus reducing our integration time, but also avoid the singularities in the

integration.

−500 0 500

5000

10000

15000

20000

25000

30000

Neutrino Pz

W Mass Squared

Figure B.3: A set of solutions which requires very careful treatment of possible

singularities in the Jacobian.
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